HỆ THỐNG MÃ HÓA HÌNH ẢNH JPEG 2000 – CÁC MỞ RỘNG ĐỐI VỚI DỮ LIỆU BA CHIỀU

JPEG 2000 image coding system: Extensions for three-dimensional data

HÀ NỘI – 2015
Mục lục

1 Phạm vi áp dụng... 7
2 Tài liệu liên quan .. 7
3 Thuật ngữ và định nghĩa ... 7
4 Ký hiệu và thuật ngữ viết tắt ... 10
 4.1 Thuật ngữ viết tắt ... 10
 4.2 Ký hiệu ... 11
5 Mô tả chung .. 12
Phụ lục A (Quy định) Cú pháp đồng mạch, phần mở rộng .. 13
 A.1 Các tính năng mở rộng ... 13
Phụ lục B (Quy định) Ảnh và xếp thứ tự dữ liệu ảnh nén, phần mở rộng .. 34
 B.1 Giới thiệu ... 34
 B.2 Giới thiệu các khái niệm về cấu trúc dữ liệu ảnh .. 34
 B.3 Ảnh xạ thành phần vào lưới tọa độ tham chiếu ... 34
 B.4 Phân chia vùng ảnh thành các khối ảnh và các khối ảnh thành phần ... 35
 B.5 Phân chia khối ảnh thành phần biến đổi thành các mức phân giải và các bảng con .. 37
 B.6 Phân chia các mức phân giải thành các phần khu ... 38
 B.7 Phân chia các bảng con thành các khối mã ... 39
 B.8 Gói tin ... 39
 B.9 Mã hóa thông tin tiêu đề gói tin .. 40
 B.10 Thứ tự lũy tiến ... 41
Phụ lục C (Quy định) Mô hình hóa bit hệ số .. 44
 C.1 Giới thiệu ... 44
 C.2 Kiểu kết khối mã trong các khối mã, phần mở rộng ... 44
 C.3 Các cập nhật về mô hình ngũ cánh ... 44
Phụ lục D (Quy định) Biến đổi sóng con rời rạc của các khối ảnh - thành phần ... 46
 D.1 Giới thiệu ... 46
 D.2 Các tham số khối ảnh - thành phần .. 46
 D.3 Biến đổi sóng con rời rạc ... 46
 D.4 Biến đổi sóng con rời rạc nghịch ... 47
 D.5 Biến đổi thuận (tham khảo) ... 55
Phụ lục E (Quy định) Luồng từ hóa .. 63
 E.1 Giới thiệu ... 63
E.2 Các biến thể của thủ tục lưỡng từ hóa nghịch

Phụ lục F (Quy định) Mã hóa ảnh theo vùng quan tâm, phần mở rộng

F.1 Giới thiệu

F.2 Giải mã ROI

F.3 Mã hóa ROI (tham khảo)

F.4 Tạo mặt nạ vùng quan tâm

F.5 Các lưu ý về mã hóa vùng quan tâm

Phụ lục G (Tham khảo) Các ví dụ và hướng dẫn, phần mở rộng

G.1 Mô hình hóa tốc độ méo

Thư mục tài liệu tham khảo
Lời nói đầu

TCVN xxx:xxxx do Học viện Công nghệ Bưu chính Viễn thông biên soạn, Bộ Thông tin và Truyền thông đề nghị, Tổng cục Tiêu chuẩn Đo lường Chất lượng thẩm định, Bộ Khoa học và Công nghệ công bố.
Hệ thống mã hóa hình ảnh JPEG 2000: Các mở rộng đối với dữ liệu ba chiều

JPEG 2000 image coding system: Extensions for three-dimensional data

1 Phạm vi áp dụng

2 Tài liệu viện dẫn
Các tài liệu viện dẫn sau đây là cần thiết để áp dụng tiêu chuẩn này. Đối với các tài liệu viện dẫn ghi năm công bố thì áp dụng phiên bản được nêu. Đối với các tài liệu viện dẫn không ghi năm công bố thì áp dụng phiên bản mới nhất (bao gồm cả các sửa đổi, bổ sung).

3 Thuật ngữ và định nghĩa
Tiêu chuẩn này sử dụng các thuật ngữ và định nghĩa sau:

3.1
Khối bit 3D (3D bit-block)
Mảng ba chiều của các bit. Trong tiêu chuẩn này, khối bit 3D nói đến tất cả các bit có cùng biến đổi ở mọi hệ số hoặc mẫu. Thuyết ngữ này có thể nói đến khối bit 3D trong thành phần, khối ảnh-thành phần, khối mã 3D, vũng quan tâm, hoặc các đối tượng khác.

3.2
Khối mã 3D (3D code-block)
Nhóm ba chiều dạng khối nhất của các hệ số từ cùng một băng con của khối ảnh-thành phần.

3.3
Quét khối mã 3D (3D code-block scan)

3.4
Thành phần (cập nhật của ITU-T T.801 | ISO/IEC 15444-2) (component)
Dữ liệu nén từ dòng mã có dạng một tập đơn gồm dữ liệu hai hoặc ba chiều.

3.5
Thiết bị đọc hợp chuẩn (cập nhật của ISO/IEC 15444-1) (conforming reader)
Ứng dụng đúng để đọc và biên dịch tập tin JP3D một cách chính xác.

3.6
Mức phân tách (cập nhật của ISO/IEC 15444-2) (decomposition level)
Tập hợp các băng con mới mà mỗi hệ số đều có cùng tác động theo không gian hoặc trái theo các mẫu gốc. Các băng con này gồm băng con [H|L|X][H|L|X][H|L|X] (ví dụ, LLL, LXL, XXH, ..., trừ XXX) được chia theo các mức con phân tách ba chiều.

3.7
Băng con [H|L|X][H|L|X][H|L|X] [H|L|X][H|L|X][H|L|X] (sub-band)
H nghĩa là lọc thông cao, L nghĩa là lọc thông thấp, X nghĩa là không lọc. Bộ lọc đầu tiên là lọc theo chiều ngang, bộ lọc thứ hai là lọc theo chiều dọc và bộ lọc thứ ba là lọc theo trục (tức là, tương ứng theo các trục X, Y và Z). Việc lập thứ tự lọc cho băng con này phải luôn được lưu ý. Việc phức dụng sẽ thực hiện theo thứ tự lọc đảo ngược.

CHÚ THÍCH: Ở đây không bao gồm băng con XXX (như định nghĩa trong 3.6).

3.8
Ảnh (cập nhật của ITU-T T.800 | ISO/IEC 15444-1) (image)

Tập tất cả các thành phần hai hoặc ba chiều.

3.9

Độ lệch vùng ảnh (cập nhật của ITU-T T.800/ ISO/IEC 15444-1) (image area offset)

Số lượng điểm lưới tạo độ tham chiếu nằm dưới, ở bên phải (và ở một vị trí dọc trục trên) của góc lưới tạo độ tham chiếu.

3.10

Thành phần trung gian (cập nhật của ITU-T T.801 | ISO/IEC 15444-2) (intermediate component)

Mảng dữ liệu đơn hai hoặc ba chiều tham gia vào giai đoạn biến đổi da thành phần.

3.11

Thứ tự quét mành (cập nhật của ITU-T T.800 | ISO/IEC 15444-1) (raster order)

Thứ tự riêng theo dãy của dữ liệu có dạng bất kỳ trong mảng. Thứ tự quét mành bắt đầu tại điểm dữ liệu cao nhất bên trái của lát ảnh đầu tiên và chuyển đến điểm dữ liệu ngay bên phải, và tiếp tục như vậy đến cuối hàng. Sau khi đã đến cuối hàng, điểm dữ liệu tiếp theo trong dãy là điểm dữ liệu gần nhất bên trái ngay dưới hàng hiện tại. Thứ tự này cứ tiếp tục như vậy đến cuối của lát ảnh. Sau đó, lát ảnh tiếp theo sẽ được xử lý theo dạng mảng ba chiều. Thứ tự như vậy được tiếp tục đến cuối mảng.

3.12

Phân giải (cập nhật của ITU-T T.801 | ISO/IEC 15444-2) (resolution)

Mối quan hệ không gian của các mẫu theo không gian vật lý. Trong tiêu chuẩn này, các mức phân tách của biến đổi sóng con sẽ tạo nên các phân giải chênh lệch theo lũy thừa hai ở chiều ngang, chiều dọc, hoặc trong trường hợp ba chiều là hướng trục, hoặc mỗi sự kết hợp có thể của các hướng. Mức phân tách cuối cùng (cao nhất) gồm một băng con [L|X][L|X][L|X] (lưu ý là không bao gồm XXX), được coi là phân giải thấp hơn. Do vậy, sẽ có hơn một mức phân giải so với số mức phân tách.

3.13

Mức phân giải (cập nhật của ITU-T T.800 | ISO/IEC 15444-1) (resolution level)

Tương đương với mức phân tách, ngoại trừ rằng băng con [L|X][L|X][L|X] cũng là một mức phân giải riêng.

3.14

Mẫu (cập nhật của ITU-T T.800 | ISO/IEC 15444-1) (sample)

Một phần tử trong mảng hai hoặc ba chiều có chứa một thành phần.
Lát ảnh (slice)
Lát ảnh là một tập hợp con ảnh điểm hai chiều của một thực thể lập thể, khối mô lập thể hoặc ảnh lập thể. Lát ảnh có có vị trí trực giao với trực hoặc trực z.

3.16
Hệ tọa độ không gian (spatial coordinates)
Hệ tọa độ không gian được biểu thị bởi các trục x, y và z. Nói chung, thuật ngữ trực sẽ được sử dụng để chỉ chiều Z.

3.17
Băng con (cập nhật của ITU-T 800 | ISO/IEC 15444-1) (sub-band)
Nhóm các hệ số biến đổi sinh ra từ cùng một chuỗi các quá trình lọc thông thấp và thông cao.

3.18
Bậc băng con (sub-band order)

3.19
Khối ảnh (cập nhật của ITU-T 800 | ISO/IEC 15444-1) (tile)
Mảng hình khối của các điểm nằm trên lưới tọa độ tham chiếu, được biểu thị bằng một đó lệch so với góc lưới tọa độ tham chiếu và được định nghĩa bởi chiều rộng (chiều x), chiều cao (chiều y) và chiều sâu (chiều z). Các khối ảnh xếp chồng được gọi là các khối ảnh-thành phần.

4 Ký hiệu và thuật ngữ viết tắt
4.1 Thuật ngữ viết tắt
Tiêu chuẩn này sử dụng các thuật ngữ viết tắt sau:

FDWT Forward discrete wavelet transformation Biên đổi sóng con rời rạc thuận
IDWT Inverse discrete wavelet transformation Biên đổi sóng con rời rạc nghịch
JPEG Joint Photographic Experts Group Nhóm các chuyên gia ảnh
LSB Least significant bit Bit có trọng số cao nhất
MSB Most significant bit Bit có trọng số thấp nhất
ROI Region-of-interest Vùng quan tâm
4.2 Ký hiệu

Tiêu chuẩn này sử dụng các ký hiệu sau:

<table>
<thead>
<tr>
<th>Ký hiệu</th>
<th>Tiêu chuẩn</th>
<th>Mô tả</th>
</tr>
</thead>
<tbody>
<tr>
<td>COC</td>
<td>Coding style component</td>
<td>Thành phần kiểu mã hóa</td>
</tr>
<tr>
<td>COD</td>
<td>Coding style default</td>
<td>Mặc định kiểu mã hóa</td>
</tr>
<tr>
<td>COM</td>
<td>Comment</td>
<td>Chữ giải</td>
</tr>
<tr>
<td>CRG</td>
<td>Component registration</td>
<td>Đăng ký thành phần</td>
</tr>
<tr>
<td>EOC</td>
<td>End of codestream</td>
<td>Kết thúc dòng mã</td>
</tr>
<tr>
<td>EPH</td>
<td>End of packet header</td>
<td>Kết thúc tiêu đề gói tin</td>
</tr>
<tr>
<td>Mₖ</td>
<td>Maximum number of bit-planes coded in a given code-block</td>
<td>Số mặt phẳng bit lớn nhất được mã hóa trong một khối mã nhất định</td>
</tr>
<tr>
<td>Nₖ</td>
<td>Number of decomposition levels as defined in COD and COC</td>
<td>Số mức phân tách được xác định trong COD và COC</td>
</tr>
<tr>
<td>PLM</td>
<td>Packet length, main header</td>
<td>Chiều dài gói tin, tiêu đề chính</td>
</tr>
<tr>
<td>PLT</td>
<td>Packet length, tile-part header</td>
<td>Chiều dài gói tin, tiêu đề khối ảnh- bộ phận</td>
</tr>
<tr>
<td>POC</td>
<td>Progression order change</td>
<td>Thay đổi thứ tự lũy tiến</td>
</tr>
<tr>
<td>PPM</td>
<td>Packed packet headers, main header</td>
<td>Các tiêu đề gói tin đóng gói, tiêu đề chính</td>
</tr>
<tr>
<td>PPT</td>
<td>Packed packet headers, tile-part header</td>
<td>Các tiêu đề gói tin đóng gói, tiêu đề khối ảnh- bộ phận</td>
</tr>
<tr>
<td>QCC</td>
<td>Quantization component</td>
<td>Thành phần lượng tử hóa</td>
</tr>
<tr>
<td>QCD</td>
<td>Quantization default</td>
<td>Mặc định lượng tử hóa</td>
</tr>
<tr>
<td>RGN</td>
<td>Region-of-interest</td>
<td>Vùng quan tâm</td>
</tr>
<tr>
<td>SIZ</td>
<td>Image and tile size</td>
<td>Kích thước ảnh và khối ảnh</td>
</tr>
<tr>
<td>SOC</td>
<td>Start of codestream</td>
<td>Bắt đầu dòng mã</td>
</tr>
<tr>
<td>SOD</td>
<td>Start of data</td>
<td>Bắt đầu dữ liệu</td>
</tr>
<tr>
<td>SOP</td>
<td>Start of packet</td>
<td>Bắt đầu gói tin</td>
</tr>
<tr>
<td>SOT</td>
<td>Start of tile-part</td>
<td>Bắt đầu khối ảnh- bộ phận</td>
</tr>
</tbody>
</table>
5 Mô tả chung

Cụ thể là, tiêu chuẩn này hỗ trợ các mở rộng sau đối với ITU-T T.801 | ISO/IEC 15444-2:

1) độ lệch DC biên tiên;
2) các nhân biến đổi sóng con tùy ý;
3) các biến đổi đa thành phần;
4) các biến đổi phi tuyến;
5) vùng quan tâm.
Phụ lục A

(Quy định)

Cú pháp dòng mã, phần mở rộng

A.1 Các tính năng mở rộng

Trong mỗi đoạn nhãn, hai byte đầu tiên ngay sau nhãn phải là một giá trị không báo hiệu biểu thị chiều dài của các tham số đoạn nhãn theo byte (bao gồm cả hai byte tham số chiều dài nhưng không gồm hai byte nhãn).

Bảng A.1 – Danh sách nhãn và đoạn nhãn

<table>
<thead>
<tr>
<th>Ký hiệu</th>
<th>Mã</th>
<th>Tiêu đề chính</th>
<th>Tiêu đề khối ảnh-bộ phận</th>
<th>ITU-T T.80x</th>
<th>ISO/IEC 15444-x cú/ mở rộng</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phân định các nhãn và đoạn nhãn</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Các đoạn nhận thông tin cố định</td>
<td>Ký hiệu</td>
<td>Mã</td>
<td>Tiêu đề chính</td>
<td>Tiêu đề khối ảnh- bộ phận</td>
<td>ITU-T T.80x</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>---------</td>
<td>----</td>
<td>---------------</td>
<td>---------------------------</td>
<td>------------</td>
</tr>
<tr>
<td>Mã</td>
<td>Tiêu đề chính</td>
<td>Tiêu đề khối ảnh-bộ phận</td>
<td>ITU-T T.80x</td>
<td>ISO/IEC 15444-x cũ/ mở rộng</td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>----------------</td>
<td>--------------------------</td>
<td>------------</td>
<td>-----------------------------</td>
<td></td>
</tr>
<tr>
<td>Ký hiệu</td>
<td>Mã</td>
<td>Tiêu đề chính</td>
<td>Tiêu đề khối ảnh-bộ phận</td>
<td>ITU-T T.80x</td>
<td>ISO/IEC 15444-1:2004</td>
</tr>
<tr>
<td>--------</td>
<td>---------</td>
<td>---------------</td>
<td>--------------------------</td>
<td>-------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Các nhãn và đoạn nhãn trong dòng bit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Các đoạn nhãn cung cấp thêm thông tin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a) “Yêu cầu” nghĩa là nhãn hoặc đoạn nhãn phải nằm trong tiêu đề này, “tùy chọn” nghĩa là có thể được sử dụng.

A.2.1 Kích thước ảnh và khối ảnh chiều bổ sung (NSI)

Chức năng: Cung cấp thông tin về ảnh chưa nén, ví dụ chiều sau của lưới tọa độ tham chiếu, chiều sau của các khối ảnh, và sự phân chia các mẫu thành phần theo lưới tọa độ tham chiếu.

Cách sử dụng: Tiêu đề chính. Phải có một và chỉ một NSI trong tiêu đề chính.

Chiều dài: Biến thiên tùy theo số lượng thành phần.

<table>
<thead>
<tr>
<th>Tham số</th>
<th>Kích thước (bit)</th>
<th>Giá trị</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSI</td>
<td>16</td>
<td>0xFF54</td>
</tr>
</tbody>
</table>
A.2.2 Mã định kiểu mã hóa (COD), mở rộng của ITU-T T.800 | ISO/IEC 15444-1

Chức năng: Mô tả kiểu mã hóa, số lượng mức phân tách và việc phân lớp được sử dụng để nên mỗi thành phần của ảnh (nếu nằm trong tiêu đề chính) hoặc khối ảnh (nếu nằm trong tiêu đề để khối ảnh-bộ phận). Đối với mỗi thành phần riêng lẻ, các giá trị tham số này có thể bị ghi đè bởi một đoạn nhãn COC trong tiêu đề để chính hoặc tiêu đề để khối ảnh-bộ phận.

Cách sử dụng: Tiêu đề để chính và tiêu đề để khối ảnh-bộ phận đầu tiên của mỗi khối ảnh nhất định. Chỉ có một và chỉ một COD trong tiêu đề để chính. Hơn nữa, mỗi thành phần có thể chỉ có tối đa một COD. Nếu khối ảnh có nhiều khối ảnh-bộ phận, và có đoạn nhãn này thì COD chỉ có thể có trong khối ảnh-bộ phận đầu tiên (TPsot = 0).

Khi được sử dụng trong tiêu đề để chính, các giá trị tham số đoạn nhãn COD được sử dụng cho mọi khối ảnh-thành phần không có đoạn nhãn COC tương ứng trong tiêu đề chính hoặc tiêu đề để khối ảnh-bộ phận. Khi được sử dụng trong tiêu đề để khối ảnh-bộ phận, giá trị tham số này ghi đè lên COD và các COC của tiêu đề để chính và được sử dụng cho mọi thành phần trong khối ảnh đó mà không cần một đoạn nhãn COC tương ứng trong khối ảnh-bộ phận. Do vậy, thứ tự ưu tiên như sau:

COC khối ảnh-bộ phận > COD khối ảnh-bộ phận > COC chính > COD chính

với ký hiệu "lớn hơn", >, có nghĩa là đoạn nhãn lớn hơn ghi đè lên nhãn bé hơn.

Chiều dài: Biến thiên tùy theo giá trị của Scod (xem tham số Lcod).
Hình A.2 – Cú pháp mặc định kiểu mã hóa

Lcod: Chiều dài của đoạn nhãn theo byte (không bao gồm nhãn). Giá trị của tham số này được xác định bằng công thức sau:

\[
L_{\text{coc}} = \begin{cases}
17 & \text{maximum_precincts} \\
17 + 2 \cdot \text{number_of_resolution_levels} & \text{user_defined_precincts}
\end{cases}
\]

với maximum_precincts và user_defined_precincts được cho trong tham số Scod và number_of_resolution_levels được tính toán bằng cách sử dụng số lượng tham số mức phân tách đối với từng chiều trong ba chiều, X, Y và Z, như được cho trong tham số SPcod. Công thức thực tế để tính toán số lượng mức phân giải được cho trong B.5.

Bảng A.3 – Các giá trị tham số mặc định kiểu mã hóa, phần mở rộng

<table>
<thead>
<tr>
<th>Tham số</th>
<th>Kích thước (bit)</th>
<th>Giá trị</th>
</tr>
</thead>
<tbody>
<tr>
<td>COD</td>
<td>16</td>
<td>0xFF52</td>
</tr>
<tr>
<td>Lcod</td>
<td>16</td>
<td>17-83</td>
</tr>
<tr>
<td>Scod</td>
<td>8</td>
<td>Bảng A.4</td>
</tr>
<tr>
<td>SGcod</td>
<td>32</td>
<td>Bảng A.5</td>
</tr>
<tr>
<td>SPcod</td>
<td>Biến thiên</td>
<td>Bảng A.6</td>
</tr>
</tbody>
</table>
Hình A.3 – Sơ đồ tham số kiểu mã hóa của các tham số \(SG_{\text{cod}} \) và \(SP_{\text{cod}} \)

<table>
<thead>
<tr>
<th>Giá trị (bit)</th>
<th>Kiểu mã hóa</th>
</tr>
</thead>
<tbody>
<tr>
<td>xxxx xxx0</td>
<td>Bộ mã hóa và giải mã entropy, các phân khu có (PP_x = 15, PP_y = 15) and (PP_z = 15)</td>
</tr>
<tr>
<td>xxxx xxx1</td>
<td>Bộ mã hóa và giải mã entropy với các phân khu thông lệ như định nghĩa ở dưới</td>
</tr>
<tr>
<td>xxxx xx0x</td>
<td>Không có đoạn nhãn SOP nào được sử dụng</td>
</tr>
<tr>
<td>xxxx xx1x</td>
<td>Các đoạn nhãn SOP có thể được sử dụng</td>
</tr>
<tr>
<td>xxxx x0xx</td>
<td>Không có nhãn EPH nào được sử dụng</td>
</tr>
<tr>
<td>xxxx x1xx</td>
<td>Nhãn EPH có thể được sử dụng</td>
</tr>
</tbody>
</table>

Tất cả các giá trị khác dùng cho dự phòng

Bảng A.5 – Các giá trị tham số kiểu mã hóa đối với tham số \(G_{\text{cod}} \)

<table>
<thead>
<tr>
<th>Tham số (theo thứ tự)</th>
<th>Kích thước (bit)</th>
<th>Giá trị</th>
<th>Ý nghĩa của các giá trị</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thứ tự lũy tiến</td>
<td>8</td>
<td>Bảng A.16 của ITU-T T.800</td>
<td>Thuchū tuy thưc</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ISO/IEC 15444-1</td>
<td></td>
</tr>
</tbody>
</table>

Bảng A.4 – Các giá trị tham số kiểu mã hóa đối với tham số \(Scod \)
<table>
<thead>
<tr>
<th>Tham số (theo thứ tự)</th>
<th>Kích thước (bit)</th>
<th>Giá trị</th>
<th>Ý nghĩa của các giá trị</th>
</tr>
</thead>
<tbody>
<tr>
<td>Số lượng lớp</td>
<td>16</td>
<td>1-65535</td>
<td>Số lượng các lớp</td>
</tr>
<tr>
<td>Biến đổi đa thành phần</td>
<td>8</td>
<td>Bảng A.8 của ITU-T T.801</td>
<td>Cách sử dụng biến đổi đa thành phần</td>
</tr>
</tbody>
</table>

Bảng A.6 – Các giá trị tham số kiểu mã hóa của các tham số SPcod và SPcoc, phần mở rộng

<table>
<thead>
<tr>
<th>Tham số (theo thứ tự)</th>
<th>Kích thước (bit)</th>
<th>Giá trị</th>
<th>Ý nghĩa của các giá trị</th>
</tr>
</thead>
<tbody>
<tr>
<td>Số lượng mức phân cách dọc trục X</td>
<td>8</td>
<td>0-32</td>
<td>Số lượng mức phân cách dọc trục X, N_{LX}, 0 nghĩa là không có biến đổi</td>
</tr>
<tr>
<td>Số lượng mức phân cách dọc trục Y</td>
<td>8</td>
<td>0-32</td>
<td>Số lượng mức phân cách dọc trục Y, N_{LY}, 0 nghĩa là không có biến đổi</td>
</tr>
<tr>
<td>Số lượng mức phân cách dọc trục Z</td>
<td>8</td>
<td>0-32</td>
<td>Số lượng mức phân cách dọc trục Z, N_{LZ}, 0 nghĩa là không có biến đổi</td>
</tr>
<tr>
<td>Chiều rộng khối mã 3D</td>
<td>8</td>
<td>Bảng A.7</td>
<td>Giá trị độ lệch theo hàm mũ của chiều rộng khối mã, xcb</td>
</tr>
<tr>
<td>Chiều đại khối mã 3D</td>
<td>8</td>
<td>Bảng A.7</td>
<td>Giá trị độ lệch theo hàm mũ của chiều đại khối mã, ycb</td>
</tr>
<tr>
<td>Chiều sâu khối mã 3D</td>
<td>8</td>
<td>Bảng A.7</td>
<td>Giá trị độ lệch theo hàm mũ của chiều sâu khối mã, zcb</td>
</tr>
<tr>
<td>Kiểu của khối mã 3D</td>
<td>8</td>
<td>Bảng A.8</td>
<td>Kiểu của các quá trình mã hóa của khối mã 3D</td>
</tr>
<tr>
<td>Nhân biến đổi dọc trục X</td>
<td>8</td>
<td>Bảng A.10 của ITU-T T.801</td>
<td>Biến đổi sóng con được sử dụng dọc trục X</td>
</tr>
<tr>
<td>Nhân biến đổi dọc trục Y</td>
<td>8</td>
<td>Bảng A.10 của</td>
<td>Biến đổi sóng con được sử dụng</td>
</tr>
<tr>
<td>Tham số (theo thứ tự)</td>
<td>Kích thước (bit)</td>
<td>Giá trị</td>
<td>Ý nghĩa của các giá trị SPcod</td>
</tr>
<tr>
<td>----------------------</td>
<td>-----------------</td>
<td>---------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ITU-T T.801</td>
<td>đọc trực Y</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ISO/IEC 15444-2</td>
<td></td>
</tr>
<tr>
<td>Nhận biến đổi đọc trực Z</td>
<td>8</td>
<td>Bảng A.10 của ITU-T T.801</td>
<td>Biến đổi sóng con được sử dụng đọc trực Z</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ISO/IEC 15444-2</td>
<td></td>
</tr>
<tr>
<td>Kích thước phân khu</td>
<td>Biến thiên</td>
<td>Bảng A.9</td>
<td>Nếu Scod hoặc Scoc = xxxx xxx0 thì không có tham số này; ngược lại thì tham số này chỉ ra chiều rộng, chiều dài và chiều sâu phân khu. Tham số đầu tiên (16 bit) tương ứng với băng con N_{LLL}. Mỗi tham số liên tiếp tương ứng với mỗi mức phân giải liên tiếp theo thứ tự.</td>
</tr>
</tbody>
</table>

Bảng A.7 – Số mũ chiều rộng, chiều cao hoặc chiều sâu của các khối mã 3D đối với các tham số SPcod và SPcoc

<table>
<thead>
<tr>
<th>Giá trị (bit)</th>
<th>MSB</th>
<th>LSB</th>
<th>Chieu rộng, chieu cao va chieu sau cua khoi ma 3D</th>
</tr>
</thead>
<tbody>
<tr>
<td>xxxx 0000 – xxxx 1011</td>
<td></td>
<td></td>
<td>Các giá trị số mũ chiều rộng, chiều cao và chiều sâu của khối mã 3D xcb = giá trị, ycb = giá trị hoặc zcb = giá trị.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CHÚ THỊCH: Phần này định nghĩa lại ITU-T T.800</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ttat ca cac gia tri khac dung cho du phong</td>
</tr>
</tbody>
</table>

Bảng A.8 – Kiêu khối mã 3D đối với các tham số SPcod và SPcoc, mở rộng

<table>
<thead>
<tr>
<th>Giá trị (bit)</th>
<th>MSB</th>
<th>LSB</th>
<th>Kiêu khối mã 3D</th>
</tr>
</thead>
<tbody>
<tr>
<td>xxxx xxx0</td>
<td></td>
<td></td>
<td>Không lựa chọn bỏ qua mã hóa số học</td>
</tr>
<tr>
<td>Giá trị (bit)</td>
<td>Kiểu khối mã 3D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>xxxx xxx0x</td>
<td>Không đặt lại các xác suất ngữ cảnh trên các biên thể mã hóa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>xxxx xx1x</td>
<td>Đặt lại các xác suất ngữ cảnh trên các biên quá trình mã hóa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>xxxx x0xx</td>
<td>Không kết thúc trên mỗi quá trình mã hóa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>xxxx x1xx</td>
<td>Kết thúc trên mỗi quá trình mã hóa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>xxxx 0xxx</td>
<td>Không có ngữ cảnh nhân quả</td>
<td></td>
<td></td>
</tr>
<tr>
<td>xxxx 1xxx</td>
<td>Các ngữ cảnh nhân quả</td>
<td></td>
<td></td>
</tr>
<tr>
<td>xx0x xxxx</td>
<td>Không có ký hiệu phân đoạn nào được sử dụng</td>
<td></td>
<td></td>
</tr>
<tr>
<td>xx1x xxxx</td>
<td>Các ký hiệu phân đoạn được sử dụng</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tất cả các giá trị khác dùng cho dự phòng</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bảng A.9 – Chiều rộng, chiều dài và chiều sâu phân khu đối với các tham số SPcod và Spcoc, phần mở rộng

<table>
<thead>
<tr>
<th>Giá trị (bit)</th>
<th>Kích thước phân khu</th>
</tr>
</thead>
<tbody>
<tr>
<td>xxxx xxxx xxxx 0000 – xxxx xxxx xxxx 1111</td>
<td>4 LSB là số mũ chiều rộng phân khu (PPx = \text{giá trị}). Giá trị này có thể chỉ bằng 0 tại mức phân giải tương ứng với bảng (N_x).</td>
</tr>
<tr>
<td>xxxx xxxx 0000 xxxx – xxxx xxxx 1111 xxxx</td>
<td>4 bit tiếp theo là số mũ chiều dài phân khu (PPy = \text{giá trị}). Giá trị này có thể chỉ bằng 0 tại mức phân giải tương ứng với bảng (N_y).</td>
</tr>
<tr>
<td>xxxx 0000 xxxx xxxx – xxxx xxxx xxxx xxxx</td>
<td>4 bit tiếp theo là số mũ chiều sâu phân khu (PPz = \text{giá trị}).</td>
</tr>
<tr>
<td>Giá trị (bit)</td>
<td>Kích thước phân khu</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>MSB LSB</td>
<td>value. Giá trị này có thể chỉ bằng 0 tại mức phân giải tương ứng với bảng NLLL.</td>
</tr>
</tbody>
</table>

Tất cả các giá trị khác dùng cho dự phòng

A.2.3 Thành phần kiểu mã hóa (COC), mở rộng của ITU-T.800 | ISO/IEC 15444-1

Chức năng: Mô tả kiểu mã hóa và số lượng mức phân tách được sử dụng để nén một thành phần nhất định.

Cách sử dụng: Tiêu đề chỉnh và tiêu đề khối ảnh- bộ phận đầu tiên của một khối ảnh nào đó. Cách sử dụng là tùy chọn ở các tiêu đề chỉnh và khối ảnh- bộ phận. Trong các tiêu đề chỉnh hoặc khối ảnh- bộ phận, mỗi thành phần nhất định chỉ có thể có tối đa một COC. Nếu có nhiều khối ảnh- bộ phận trong một khối ảnh và có đoạn nhãn này thì COC chỉ có thể có trong khối ảnh- bộ phận đầu tiên (TPsot = 0).

Đối với mỗi thành phần, khi được sử dụng trong tiêu đề chỉnh thì COC ghi đè lên đoạn nhãn COD chính. Đối với mỗi thành phần, khi được sử dụng trong tiêu đề khối ảnh- bộ phận thì COC ghi đè lên COD tiêu đề chính, COC chính và COD khối ảnh. Do đó, thứ tự ưu tiên như sau:

COC khối ảnh- bộ phận > COD khối ảnh- bộ phận > COC chính > COD chính

Với dấu "lớn hơn", >, có nghĩa là đoạn nhãn lớn hơn ghi đè lên đoạn nhãn bé hơn.

Chiều dài: Biến thiên tùy theo giá trị của Scoc (xem tham số Lcoc).

Hình A.4 – Cú pháp thành phần kiểu mã hóa

COC: Mã nhận. Bảng A.10 đưa ra kích thước và các giá trị của ký hiệu và các tham số đối với đoạn nhận thành phần kiểu mã hóa.

Lcoc: Chiều dài của đoạn nhận theo byte (không bao gồm nhận). Giá trị của tham số này được xác định bằng công thức sau:

\[
L_{loc} = \begin{cases}
14 + 2 \cdot \text{number_of_resolution_levels} & \text{maximum_precincts AND Csiz < 257} \\
15 + 2 \cdot \text{number_of_resolution_levels} & \text{maximum_precincts AND Csiz \geq 257} \\
14 + 2 \cdot \text{number_of_resolution_levels} & \text{user_defined_precincts AND Csiz < 257} \\
15 + 2 \cdot \text{number_of_resolution_levels} & \text{user_defined_precincts AND Csiz \geq 257}
\end{cases}
\]

(A-3)
Ccoc: Chỉ số của thành phần mà đoạn nhãn này liên quan. Các thành phần có chỉ số 0, 1, 2,

Scoc: Kiểu mã hóa đối với thành phần này. Bảng A.11 đưa ra các giá trị đối với mỗi tham số Scoc.

SPcoc: Các tham số đối với kiểu mã hóa được xác định trong Scoc. Các tham số kiểu mã hóa trong trường SPcoc xuất hiện theo đây thứ tự như trong Hình A.5.

![Hình A.5 – Sơ đồ tham số kiểu mã hóa của tham số SPcoc](image)

Bảng A.10 – Các giá trị tham số thành phần kiểu mã hóa, phần mở rộng

<table>
<thead>
<tr>
<th>Tham số</th>
<th>Kích thước (bit)</th>
<th>Giá trị</th>
</tr>
</thead>
<tbody>
<tr>
<td>COC</td>
<td>16</td>
<td>0xFF53</td>
</tr>
<tr>
<td>Lcoc</td>
<td>16</td>
<td>4-102</td>
</tr>
<tr>
<td>Ccoc</td>
<td>8, 16</td>
<td>0-255; nếu Csiz < 257 0-16383; nếu Csiz ≥ 257</td>
</tr>
<tr>
<td>Scoc</td>
<td>8</td>
<td>Bảng A.11</td>
</tr>
<tr>
<td>SPcoci</td>
<td>Biến thiên</td>
<td>Bảng A.6</td>
</tr>
</tbody>
</table>

Bảng A.11 – Các giá trị tham số kiểu mã hóa đối với tham số Scoc, phần mở rộng

<table>
<thead>
<tr>
<th>Giá trị (bit)</th>
<th>Kiểu mã hóa</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSB LSB</td>
<td></td>
</tr>
<tr>
<td>xxxx xxxx0</td>
<td>Bố mã hóa và giải mã Entropy với các giá trị phân khu lớn nhất $PP_x = PP_y = PP_z = 15$</td>
</tr>
<tr>
<td>xxxx xxxx1</td>
<td>Bố mã hóa và giải mã Entropy có các giá trị phân khu được xác định trong $SPcoc$</td>
</tr>
</tbody>
</table>
Giá trị (bit)
<table>
<thead>
<tr>
<th>MSB</th>
<th>LSB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kiểu mã hóa</td>
<td></td>
</tr>
<tr>
<td>Tất cả giá trị khác dùng cho dự phòng</td>
<td></td>
</tr>
</tbody>
</table>

A.2.4 Vùng quan tâm (RGN), mở rộng của ITU-T T.801 | ISO/IEC 15444-2

Chức năng: Báo hiệu về sự có mặt của vùng quan tâm (ROI) trong dòng mã.

Cách sử dụng: Tiêu đề chỉnh và tiêu đề khối ảnh, phần đầu tiên của khối ảnh cụ thể. Nếu đoạn nhãn RGN trong tiêu đề chỉnh với Srgn = 0 thì không được có bất kỳ một đoạn nhãn RGN nào trong dòng mã với giá trị Srgn khác 0 đối với thành phần được cho bởi giá trị Crgn tương ứng. Ngược lại, nếu có đoạn nhãn RGN trong tiêu đề chỉnh với giá trị Srgn khác 0 thì không được có bất kỳ một đoạn nhãn RGN nào trong dòng mã với Srgn = 0 đối với thành phần được cho bởi giá trị Crgn tương ứng.

Đối với mỗi khó ảnh, khi được sử dụng trong cả tiêu đề chỉnh và tiêu đề khối ảnh, phần đầu tiên thì RGN trong tiêu đề chỉnh và khối ảnh phần đầu tiên ghi đè lên ROI chính. Và, RGN xác định một thành phần đơn (Crgn ≠ 65 535) cũng ghi đè lên ROI xác định mọi thành phần (Crgn = 65 535). Do đó, thứ tự ưu tiên như sau:

- RGN khối ảnh-bộ phận (Crgn ≠ 65 535) > RGN khối ảnh-bộ phận (Crgn = 65 535) > RGN chính (Crgn ≠ 65 535) > RGN chính (Crgn = 65 535)

Với dấu "lớn hơn", >, có nghĩa là đoạn nhãn lớn hơn ghi đè lên đoạn nhãn bé hơn.

Chỉ dài: Biến thiên.

![Hình A.6 – Cú pháp vùng quan tâm](T808(07) FA-8)

RGN: Mã nhãn. Bảng A.12 đưa ra kích thước và các giá trị của ký hiệu và các tham số đối với đoạn nhãn vùng quan tâm.

Lrgn: Chỉ dài của đoạn nhãn theo byte (không bao gồm nhãn).

Crgn: Chỉ số của thành phần mà nhận thấy liên quan. Các thành phần có chỉ số 0, 1, 2,

SPrgn: Tham số đối với kiểu ROI được chỉ định trong Srgn. SPrgn chỉ được báo hiệu đối với Srgn = 1 hoặc Srgn = 2.
Bảng A.12 – Các giá trị tham số vùng quan tâm, phần mở rộng

<table>
<thead>
<tr>
<th>Tham số</th>
<th>Kích thước (bit)</th>
<th>Giá trị</th>
</tr>
</thead>
<tbody>
<tr>
<td>RGN</td>
<td>16</td>
<td>0xFF5E</td>
</tr>
<tr>
<td>Lrgn</td>
<td>16</td>
<td>5-30</td>
</tr>
<tr>
<td>SPrgn</td>
<td>Biến thiên</td>
<td>Bảng A.13</td>
</tr>
</tbody>
</table>

Bảng A.13 – Các giá trị vùng quan tâm từ tham số SPrgn (Srgn = 1 hoặc Srgn = 2), phần mở rộng

<table>
<thead>
<tr>
<th>Tham số (theo thứ tự)</th>
<th>Kích thước (bit)</th>
<th>Giá trị</th>
<th>Ý nghĩa của giá trị SPrgn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dịch nhị phân</td>
<td>8</td>
<td>0-255</td>
<td>Dịch nhị phân của các hệ số trong vùng quan tâm trên hình nền.</td>
</tr>
<tr>
<td>XArgn (bên trái)</td>
<td>32</td>
<td>0-(232 – 1)</td>
<td>Điểm lưới tọa độ tham chiếu ngang từ gốc của điểm đầu tiên. (Trong trường hợp ellipse, Srgn = 2, giá trị này không được lớn hơn chiều rộng của ảnh.)</td>
</tr>
<tr>
<td>YArgn (ở trên)</td>
<td>32</td>
<td>0-(232 – 1)</td>
<td>Điểm lưới tọa độ tham chiếu dọc từ gốc của điểm đầu tiên. (Trong trường hợp ellipse, Srgn = 2, giá trị này không được lớn hơn chiều cao của ảnh.)</td>
</tr>
<tr>
<td>ZArgn (mặt trước)</td>
<td>32</td>
<td>0-(232 – 1)</td>
<td>Điểm lưới tọa độ tham chiếu trục từ gốc của điểm đầu tiên. (Trong trường hợp ellipse, Srgn = 2, giá trị này không được lớn hơn chiều sâu của ảnh.)</td>
</tr>
<tr>
<td>Tham số (theo thứ tự)</td>
<td>Kích thước (bit)</td>
<td>Giá trị</td>
<td>Ý nghĩa của giá trị SPrgn</td>
</tr>
<tr>
<td>------------------------</td>
<td>-----------------</td>
<td>---------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>XBrgn (bên phải)</td>
<td>32</td>
<td>0-(232 – 1)</td>
<td>Điểm lưới tọa độ tham chiếu ngang từ gốc của điểm thứ hai.</td>
</tr>
<tr>
<td>YBrgn (ở dưới)</td>
<td>32</td>
<td>0-(232 – 1)</td>
<td>Điểm lưới tọa độ tham chiếu dọc từ gốc của điểm thứ hai.</td>
</tr>
<tr>
<td>ZBrgn (mặt sau)</td>
<td>32</td>
<td>0-(232 – 1)</td>
<td>Điểm lưới tọa độ tham chiếu trục từ gốc của điểm thứ hai.</td>
</tr>
</tbody>
</table>

A.2.5 Mặc định thành phần lượng tử hóa (QCD), mở rộng của ITU-T T.800 | ISO/IEC 15444-1

Chức năng: Mô tả mặc định lượng tử hóa được sử dụng để nén tất cả các thành phần chưa được xác định bởi một đoạn nhãn QCC. Đối với mỗi thành phần riêng lẻ, các giá trị tham số này có thể bị ghi đè bởi một đoạn nhãn QCC trong tiêu đề để chính hoặc tiêu đề khối ảnh- bộ phận.

Usage: Tiêu đề chính và tiêu đề khối ảnh- bộ phận đầu tiên của một khối ảnh cụ thể. Chỉ có một và chỉ một QCD trong tiêu đề để chính. Có thể có tới dã một QCD đối với mỗi tiêu đề khối ảnh- bộ phận của mỗi khối ảnh. Nếu khối ảnh có nhiều khối ảnh- bộ phận, và có đoạn nhãn này thì QCD chỉ nằm trong khối ảnh- bộ phận đầu tiên (TPsot = 0).

Đối với thành phần nhất định, khi được sử dụng trong tiêu đề để khối ảnh- bộ phận thì QCD đó ghi đè lên QCD chính và QCC chính. Do đó, thứ tự ưu tiên như sau:

QCC khối ảnh- bộ phận > QCD khối ảnh- bộ phận > QCC chính > QCD chính

Với dấu "lớn hơn", >, có nghĩa là đoạn nhãn lớn hơn ghi đè lên đoạn nhãn bé hơn.

Chiều dài: biến thiên tùy theo số lượng phần tử được lượng tử hóa.

![Hình A.7 – Kiểu mặc định lượng tử hóa](image)

- **QCD:** Mã nhãn. Bảng A.14 đưa ra kích thước và các giá trị của ký hiệu và các tham số đối với đoạn nhãn mặc định lượng tử hóa.

- **Lqcd:** Chiều dài của đoạn nhãn theo byte (không bao gồm nhãn). Giá trị của tham số này được xác định bằng công thức sau:
với number_of_sub-bands (phụ thuộc vào số lượng mức phân tích dọc trục X, Y và Z axis) được xác định trong các đoạn nhãn COD và COC, và no_quantization, scalar_quantization_derived, hoặc scalar_quantization_expounded được báo hiệu trong tham số L_{qcd}.

CHÚ THÍCH: L_{qcd} có thể được sử dụng để xác định xem trong đoạn nhãn có bao nhiêu kích thước bước lượng hóa. Tuy nhiên, không nhất thiết là số kích thước bước lượng hóa phải tương đương với số băng con hiện có do các băng con có thể bị bỏ bớt mà không cần phải sửa đoạn nhãn này.

S_{qcd}: Kiểu lượng tử hóa đối với mỗi thành phần.

S_{pqcdi}: Giá trị kích thước bước lượng hóa đối với băng con thứ i theo một thứ tự xác định (xem Phụ lục B). Số lượng tham số bằng số lượng băng con trong khối thành phần có số lượng mức phân tích lớn nhất, N_L.

Bảng A.14 – Các giá trị tham số mặc định lượng tử hóa, phần mở rộng

<table>
<thead>
<tr>
<th>Tham số</th>
<th>Kích thước (bit)</th>
<th>Giá trị</th>
</tr>
</thead>
<tbody>
<tr>
<td>QCD</td>
<td>16</td>
<td>0xFF5C</td>
</tr>
<tr>
<td>L_{qcd}</td>
<td>16</td>
<td>4-441</td>
</tr>
<tr>
<td>S_{qcd}</td>
<td>8</td>
<td>Bảng A.28 của ITU-T 800</td>
</tr>
<tr>
<td>S_{pqcdi}</td>
<td>Biến thiên</td>
<td>Bảng A.28 của ITU-T 800</td>
</tr>
</tbody>
</table>

A.2.6 Thành phần lượng tử hóa (QCC), mở rộng của ITU-T 800 | ISO/IEC 15444-1

Chức năng: Mô tả sự lượng hóa được sử dụng để nén một thành phần nhật định.

Tùy chọn trong cả các tiêu đề chính và tiêu đề không ảnh-bộ phận. Đối với mỗi thành phần nhật định, khi được sử dụng trong tiêu đề chính thì QCC chỉ được ghi đè lên đoạn nhãn QCD chính. Đối với mỗi thành phần nhật định, khi được sử dụng trong tiêu đề không ảnh-bộ phận thì QCC chỉ được ghi đè lên đoạn nhãn QCD chính.
ảnh-bộ phận thì QCC ghi đến lên QCD chính, QCC chính, và QCD của khối ảnh. Do đó, thứ tự ưu tiên như sau:

QCC khối ảnh-bộ phận > QCD khối ảnh-bộ phận > QCC chính > QCD chính

Với dấu "lớn hơn", >, có nghĩa là đoạn lớn hơn ghi đến đoạn bé hơn.

Chiều dài: biên thiên tùy theo số lượng phân tử được lượng tử.

\[
\begin{align*}
\text{Cqcc} & \quad \text{SPqcc^i} \\
\text{Lqcc} & \quad \text{SQcc} \\
\text{SPqcc} & \quad \text{SPqcc^n}
\end{align*}
\]

Hình A.8 – Cú pháp của thành phần lượng tử hóa

QCC: Mã nhận. Bản A.15 đưa ra kích thước và các giá trị của ký hiệu và các tham số đối với đoạn nhận thành phần lượng tử hóa.

Lqcc: Chỉ số của đoạn nhận theo byte (không bao gồm nhận). Giá trị của tham số này được xác định bằng công thức sau:

\[
Lqcc = \begin{cases}
5 \cdot \text{number_of_subbands} \quad \text{no_quantization AND Csiz < 257} \\
6 + 2 \cdot \text{number_of_subbands} \quad \text{scalar_quantization_derived AND Csiz < 257} \\
6 + \text{number_of_subbands} \quad \text{scalar_quantization_expounded AND Csiz < 257} \\
7 \quad \text{no_quantization AND Csiz \geq 257} \\
7 + 2 \cdot \text{number_of_subbands} \quad \text{scalar_quantization_derived AND Csiz \geq 257} \\
\end{cases}
\]

CHÚ THỊCH: Lqcc có thể được sử dụng để xác định xem có bao nhiêu kích thước bước lượng tử trong đoạn nhận. Tuy nhiên, không nhất thiết là số lượng kích thước bước lượng tử hóa phải tương ứng với số lượng băng con hiện có do các băng con có thể bị bỏ bớt mà không cần phải sửa đoạn nhận này.

Cqcc: Chỉ số của thành phần mà đoạn nhận này liên quan. Các thành phần có chỉ số 0, 1, 2, ..., (8 hoặc 16 bit tùy theo kích thước Csiz.)

Sqcc: Kiểu lượng tử hóa đối với thành phần này.

SPqcci: Giá trị lượng tử hóa đối với mỗi băng con theo một thứ tự xác định (xem Phụ lục D). Số lượng tham số số lượng băng con trong khối ảnh-thành phần có số lượng mức phân tách lớn nhất.

Bảng A.15 – Các giá trị tham số thành phần lượng tử hóa

<table>
<thead>
<tr>
<th>Tham số</th>
<th>Kích thước (bit)</th>
<th>Giá trị</th>
</tr>
</thead>
<tbody>
<tr>
<td>QCC</td>
<td>16</td>
<td>0xFF5D</td>
</tr>
</tbody>
</table>
A.2.7 Đăng ký thành phần (CRG), mở rộng của ITU-T T.800 | ISO/IEC 15444-1

Chức năng: Cho phép sự đăng ký riêng của các thành phần theo các thành phần khác. Với các mục đích mã hóa, các mẫu của các thành phân được coi là nằm tại các điểm lưới tọa độ tham chiếu là bội số nguyên của X_{Rsiz}, Y_{Rsiz} và Z_{Rsiz} (xem Phụ lục B). Tuy nhiên, điều này có thể không phù hợp cho việc kết xuất ảnh. Đoạn nhãn CRG mô tả "trọng tâm" của các mẫu của từng thành phần theo sự phân chia. Đoạn nhãn này không có ảnh hưởng đến việc giải mã dòng mà.

CHÚ THỊCH: Độ lệch đăng ký thành phần này là theo độ lệch ảnh (X_{Osiz}, Y_{Osiz} và Z_{Osiz}) và sự phân chia thành phần (X_{Rsiz}, Y_{Rsiz} and Z_{Rsiz}). Vi dụ, điểm lưới tọa độ tham chiếu ngang đối với các mẫu bên trái gần nhất của thành phần c là $X_{Rsiz}^{-}\left[\frac{X_{Osiz}}{X_{Rsiz}}\right]$, (Ngược lại đối với chiều dọc và chiều trục.) Độ lệch ngang được chỉ thị trong đoạn nhãn này là phân bổ sung vào độ lệch này.

Cách sử dụng: Chỉ trong tiêu đề chính. Chỉ một CRG có thể được sử dụng trong tiêu đề chính và điều này có thể áp dụng cho tất cả các birkaç ảnh.

Chỉ tiêu: Biển thiên tùy theo số thành phần.

Hình A.9 – Cú pháp đăng ký thành phần

<table>
<thead>
<tr>
<th>CRG</th>
<th>Lcrg</th>
<th>Xcrgi</th>
<th>Ycrgi</th>
<th>Zcrgi</th>
<th>Xcrgn</th>
<th>Ycrgn</th>
<th>Zcrgn</th>
</tr>
</thead>
</table>

CRG: Mã nhận. Bảng A.16 đưa ra kích thước và các giá trị của ký hiệu và các tham số đối với đoạn nhận đăng ký thành phần.

Lcrg: Chỉ tiêu dài của đoạn nhận theo byte (không bao gồm nhận).

Xcrgi: Giá trị của độ lệch ngang, theo đơn vị là $1/65536$ của phần chia ngang X_{Rsiz}^i, đối với thành phần thứ i. Do đó, đối giá trị từ $0/65536$ (mẫu tại điểm lưới tọa độ tham chiếu của mẫu) đến X_{Rsiz}^i $(65535/65536)$ (ngay trước điểm lưới tọa độ tham chiếu của mẫu tiếp theo). Giá trị này được lập lại đối với mỗi thành phần.

Xcrgn:

Ycrgi:

Zcrgi:

ISO/IEC 15444-1

Bảng A.28 của ITU-T T.800 | ISO/IEC 15444-1

<table>
<thead>
<tr>
<th>Tham số</th>
<th>Kích thước (bit)</th>
<th>Giá trị</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lqcc</td>
<td>16</td>
<td>5-443</td>
</tr>
<tr>
<td>Cqcc</td>
<td>8, 16</td>
<td>0-255; nếu Csiz < 257 0-16383; nếu Csiz ≥ 257</td>
</tr>
<tr>
<td>Sqcc</td>
<td>8</td>
<td>Bảng A.28 của ITU-T T.800</td>
</tr>
<tr>
<td>SPqcci</td>
<td>Biển thiên</td>
<td>Bảng A.28 của ITU-T T.800</td>
</tr>
</tbody>
</table>
Ycrgi: Giá trị của độ lệch dọc, theo đơn vị là 1⁄65536 của sự phân chia dọc YRsiz'i đối với thành phần thứ i. Do đó, đại giá trị từ 065536 (mẫu tại điểm lưới tọa độ tham chiếu của mẫu) đến YRsiz' (65535/65536) (ngay trước điểm lưới tọa độ tham chiếu của mẫu tiếp theo). Giá trị này được lặp lại đối với mọi thành phần.

Zcrgi: Giá trị của độ lệch trục, theo đơn vị là 1⁄65536 của sự phân chia trục ZRsiz'i, đối với thành phần thứ i. Do đó, đại giá trị từ 065536 (mẫu tại điểm lưới tọa độ tham chiếu của mẫu) đến ZRsiz' (65535/65536) (ngay trước điểm lưới tọa độ tham chiếu của mẫu tiếp theo). Giá trị này được lặp lại đối với mọi thành phần.

<table>
<thead>
<tr>
<th>Tham số</th>
<th>Kích thước (bit)</th>
<th>Giá trị</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRG</td>
<td>16</td>
<td>0xFF63</td>
</tr>
<tr>
<td>Lcrg</td>
<td>16</td>
<td>6-65534</td>
</tr>
<tr>
<td>Xcrgi</td>
<td>16</td>
<td>0-65535</td>
</tr>
<tr>
<td>Ycrgi</td>
<td>16</td>
<td>0-65535</td>
</tr>
<tr>
<td>Zcrgi</td>
<td>16</td>
<td>0-65535</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Giá trị (bit)</th>
<th>Kiểu mã hóa</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000 0000 0000 0000 0000</td>
<td>Không có các tính năng mở rộng</td>
</tr>
<tr>
<td></td>
<td>Tất cả các giá trị khác dùng cho dự phòng</td>
</tr>
</tbody>
</table>
Phụ lục B

(Quy định)

Ảnh và xếp thứ tự dữ liệu ảnh nén, phần mở rộng

B.1. Giới thiệu

Trong phụ lục này và các điều nhỏ của phụ lục, các biểu đồ và bảng chỉ có tính quy định trong trường hợp chúng xác định một đầu ra mà các triển khai tùy chọn phải tuân thủ. Phụ lục này mô tả các thực thể cấu trúc khác nhau và tổ chức của chúng trong dòng mã: các thành phần, các khối ảnh, các băng con và các phần nhỏ của chúng.

B.2. Giới thiệu các khái niệm về cấu trúc dữ liệu ảnh

Các thành phần không còn chứa các mảng hai chiều của các mẫu, nhưng chúng lại gồm các mảng ba chiều của các mẫu. Mỗi thành phần, c, bây giờ có các tham số XRsz_c, YRsiz_c và ZRsiz_c xác định sự ấn xạ giữa các mẫu thành phần và các điểm lưới tọa độ tham chiếu.

Mỗi mức phân giải đều gồm các băng con [L|H|X][L|H|X][L|H|X] (không bao gồm băng con LLL) hoặc băng con NLLL, do đó làm thay đổi số lượng băng con trên mỗi mức phân tách, m, với m < N, từ ba thành dài [2;7] (xem Hình D.6).

Mỗi băng con đều có gốc. Các điều kiện biên của băng con là riêng cho mỗi băng con [L|H|X][L|H|X][L|H|X].

B.3 Ánh xạ thành phần vào lưới tọa độ tham chiếu

Lưới tọa độ tham chiếu trở thành không gian ba chiều của các điểm có chỉ số từ (0, 0, 0) tới (Xsz–1, Ysz–1, Zsz–1). Khi đó, mỗi “vùng ảnh” được xác định trên lưới tọa độ tham chiếu bằng các tham số chiếu, (Xsz, Ysz, Zsz) và (XOsiz, YOsiz, ZOsiz). Cụ thể là, vùng ảnh trên lưới tọa độ tham chiếu được xác định bởi các điểm lưới tọa độ tham chiếu của chúng tại vị trí (XOsiz, YOsiz, ZOsiz) và (Xsz–1, Ysz–1, Zsz–1).
Các mẫu của thành phần c bây giờ nằm tại các vị trí bội số nguyên của \((XRsiz_c, YRsiz_c, ZRsiz_c)\) trên lưới tọa độ tham chiếu. Mỗi vùng thành phần là một phiên bản mẫu con của lưới tọa độ tham chiếu có tọa độ \((0, 0, 0)\) là điểm chung của từng thành phần.

Do đó, các mẫu của thành phần c được ánh xạ vào một hình khối có các tọa độ \((x_0, y_0, z_0)\) là điểm chung của từng thành phần.

\[
\begin{align*}
z_0 &= \left[ZOsiz_c \right. \\
z_1 &= \left. Zsiz \right. \\
ZRsiz_c \\
ZOsiz_z
\end{align*}
\]

Do đó, ba chiều của thành phần c được xác định bởi

\[
(\text{chiều rộng, chiều cao, chiều sâu}) = (x_1 - x_0, y_1 - y_0, z_1 - z_0)
\]

Các tham số \(Zsiz, ZOsiz\) và \(ZRsiz_c\) đều được xác định trong đoạn nhãn NSI (xem A.2.1).

B.4 Phân chia vùng ảnh thành các khối ảnh và các khối ảnh-thành phần

Lưới tọa độ tham chiếu được phân chia thành một mạng ba chiều trong đó thường là các khối ảnh. Trên lưới tọa độ tham chiếu, kích thước khối ảnh và các độ lệch phân chia khối ảnh được xác định tương ứng với các cặp chiều \((XTsiz, YTsiz, ZTsiz)\) và \((XTOsiz, YTOsiz, ZTOsiz)\). \(ZTsiz\) và \(ZTOsiz\) là các tham số từ đoạn nhãn NSI.

Mọi khối ảnh đều có chiều rộng các điểm lưới tọa độ tham chiếu \(XTsiz\), chiều cao các điểm lưới tọa độ tham chiếu \(YTsiz\) và chiều sâu các điểm lưới tọa độ tham chiếu \(ZTsiz\). Góc trên bên trái mặt trước của khối ảnh đầu tiên (khối ảnh 0) có độ lệch so với góc trên bên trái mặt trước của lưới tọa độ tham chiếu là \((XTOsiz, YTOsiz, ZTOsiz)\). Các khối ảnh được đánh số theo thứ tự quét mành (tức là, từ trái sang phải, cao xuống thấp, trước ra sau). Con số này là chỉ số khối ảnh.

Các độ lệch lưới khối ảnh \((XTOsiz, YTOsiz, ZTOsiz)\) bị giới hạn không được lớn hơn các độ lệch vùng ảnh. Điều này được thể hiện bằng công thức B-3 của ITU-T T.800 | ISO/IEC 15444-1 và được bổ sung bằng dải sau đây:

\[
0 \leq ZTOsiz \leq ZOsiz
\]

Kích thước ảnh cùng với độ lệch khối ảnh phải lớn hơn độ lệch vùng ảnh. Điều này đảm bảo rằng khối ảnh đầu tiên (khối ảnh 0) sẽ chứa ít nhất một điểm lưới tọa độ tham chiếu từ vùng ảnh. Điều này đã được thể hiện bởi công thức B-4 của ITU-T T.800 | ISO/IEC 15444-1 và được bổ sung bằng dải sau đây:

\[
ZTsiz + ZTOsiz > ZOsiz
\]

Số lượng khối ảnh trên chiều ngang \((X)\) (\(numXtiles\)) và chiều dọc \((Y)\) (\(numYtiles\)) được cho bởi công thức B-5 của ITU-T T.800 | ISO/IEC 15444-1. Số lượng khối ảnh trên chiều trục \((Z)\) (\(numZtiles\)) được cho như sau:
Để thuận tiện trong việc mô tả các khối ảnh cần được đánh số theo vị trí ngang, dọc và trục. Đặt \(p_x \) là chỉ số ngang của một khối ảnh và \(p_y \) là chỉ số dọc của khối ảnh, khi đó \(p_z \) sẽ là chỉ số trục của khối ảnh, lấy từ 0 đến (numTiles - 1). Công thức sau định nghĩa lại \(p_x \) and \(p_y \) (Công thức B-6 của T.800 | ISO/IEC 15444-1) và định nghĩa \(p_z \):

\[
\begin{align*}
 p_x &= \text{mod}(\text{mod}(t, \text{numTiles} \cdot \text{numYtiles}), \text{numTiles}) \\
 p_y &= \frac{\text{mod}(t, \text{numTiles} \cdot \text{numYtiles})}{\text{numTiles}} \\
 p_z &= \frac{t}{\text{numTiles} \cdot \text{numYtiles}}
\end{align*}
\]

Đối với các tọa độ của một khối ảnh cụ thể trên lưới tọa độ tham chiếu, chúng được mô tả bằng các công thức sau:

\[
\begin{align*}
 tx_0(p_x, p_y, p_z) &= \max(XOsiz + p_x \cdot XTsz, XOsiz) \\
 ty_0(p_x, p_y, p_z) &= \max(YOsiz + p_y \cdot YTsz, YOsiz) \\
 tz_0(p_x, p_y, p_z) &= \max(ZOsiz + p_z \cdot ZTsz, ZOsiz) \\
 tx_1(p_x, p_y, p_z) &= \min(XOsiz + (p_x + 1) \cdot XTsz, Xsz) \\
 ty_1(p_x, p_y, p_z) &= \min(YOsiz + (p_y + 1) \cdot YTsz, Ysz) \\
 tz_1(p_x, p_y, p_z) &= \min(ZOsiz + (p_z + 1) \cdot ZTsz, Zsz)
\end{align*}
\]

Với \(tx_0(p_x, p_y, p_z), ty_0(p_x, p_y, p_z) \) và \(tz_0(p_x, p_y, p_z) \) là các tọa độ của góc trên bên trái mặt trước của khối ảnh và \(tx_1(p_x, p_y, p_z) - 1, ty_1(p_x, p_y, p_z) - 1 \) và \(tz_1(p_x, p_y, p_z) - 1 \) là các tọa độ của góc dưới bên phải mặt sau của khối ảnh. Chúng ta thường bỏ qua các tọa độ của khối ảnh khi nói đến một khối ảnh cụ thể và thay vào đó lấy nói đến các tọa độ \((tx_0, ty_0, tz_0)\) và \((tx_1, ty_1, tz_1)\).

Do đó, các chiều của một khối ảnh trên lưới tọa độ tham chiếu là:

\[
(tcx_0 - tx_0, tcy_0 - ty_0, tcz_0 - tz_0)
\]

Trong miền của thành phần ảnh \(\text{i} \), các tọa độ của mẫu trên bên trái mặt trước được cho bởi \((tcx_0, tcy_0, tcz_0) \) và các tọa độ của mẫu dưới bên phải mặt sau được cho bởi \((tcx_1, tcy_1, tcz_1) \), với \(tcx_0, tcy_0, tcy_1, tcz_1 \) đã được mô tả trong Công thức B-12 của ITU-T T.800 | ISO/IEC 15444-1 và \(tcz_0 \) và \(tcz_1 \) được cho bởi công thức sau:

\[
\begin{align*}
 tcz_0 &= \left\lfloor \frac{tz_0}{ZRsz} \right\rfloor \\
 tcz_1 &= \left\lfloor \frac{tz_1}{ZRsz} \right\rfloor
\end{align*}
\]

Do vậy, các chiều của khối ảnh-thành phần trong lưới tọa độ tham chiếu là:

\[
(tcx_1 - tcx_0, tcy_1 - tcy_0, tcz_1 - tcz_0)
\]
B.5 Phân chia khối ảnh thành phần biên đối thành các mức phân giải và các bảng con

Mỗi khối ảnh thành phần được biểu diễn song song với các mức phân tách \(N_{LX} \) trong chiều dọc và các mức phân tách \(N_{LY}, N_{LZ} \) trong chiều thực trước như được mô tả trong Phụ lục D. Chierrez có số lượng mức phân tách lớn nhất cũng quyết định số lượng mức phân giải. Do đó, với \(N_L = \max(N_{LX}, N_{LY}, N_{LZ}) \) như xác định trong D.3.2, thì sẽ có \((N_L + 1)\) mức phân giải riêng, biểu thị bằng \(r = 0, 1, ..., N_L \). Mỗi mức phân giải, \(r \), được thiết kế bằng bảng \(n[L|X][L|Y][L|X] \), có \(n = N_L - r \), với loại bảng con thực tế được xác định bằng số lượng phân tách trong mỗi chiều (xem D.4.1). Ví dụ, khi \(N_{LX} \) bằng 3, \(N_{LY} \) bằng 3 và \(N_{LZ} \) bằng 2, thì tại \(r = 0 \), mức phân giải thấp nhất được biểu thị bằng bảng 3LLL, còn khi \(r = 1 \), mức phân giải được biểu thị bằng bảng 2LLL. Phần này mô tả các chiều của sự phân giải giảm dần này.

Các tọa độ của một khối ảnh thành phần nào đó có liên quan đến lưới tọa độ tham chiếu tại một mức phân giải cụ thể, \(r \), sẽ sinh ra các tọa độ của mẫu trên bên trái mặt trước, \((tx_0, ty_0, tz_0)\) và các tọa độ của mẫu dưới bên phải mặt sau, \((tx_{-1}, ty_{-1}, tz_{-1})\), với:

\[
\begin{align*}
\text{tx}_0 &= \left[\frac{tcx_0}{2\min(N_{L}-r, N_{LX})} \right] \\
\text{ty}_0 &= \left[\frac{tcy_0}{2\min(N_{L}-r, N_{LY})} \right] \\
\text{tz}_0 &= \left[\frac{tcz_0}{2\min(N_{L}-r, N_{LZ})} \right]
\end{align*}
\]

\[
\begin{align*}
\text{tx}_1 &= \left[\frac{tcx_1}{2\min(N_{L}-r, N_{LX})} \right] \\
\text{ty}_1 &= \left[\frac{tcy_1}{2\min(N_{L}-r, N_{LY})} \right] \\
\text{tz}_1 &= \left[\frac{tcz_1}{2\min(N_{L}-r, N_{LZ})} \right]
\end{align*}
\]

Theo cách tương tự, các tọa độ khối ảnh có thể được ảnh xạ vào bảng con bất kỳ, \(b \), sinh ra các tọa độ của mẫu trên bên trái mặt trước \((t bx_0, t by_0, t bz_0)\) và các tọa độ của mẫu dưới bên phải mặt sau \((t bx_{-1}, t by_{-1}, t bz_{-1})\) với:

\[
\begin{align*}
\text{tx}_{\text{b}0} &= \left[\frac{tcx_{\text{b}0} - (2^{n_{\text{b}0}-1} \cdot xo_{\text{b}})}{2^{n_{\text{b}0}}} \right] \\
\text{ty}_{\text{b}0} &= \left[\frac{tcy_{\text{b}0} - (2^{n_{\text{b}0}-1} \cdot yo_{\text{b}})}{2^{n_{\text{b}0}}} \right] \\
\text{tz}_{\text{b}0} &= \left[\frac{tcz_{\text{b}0} - (2^{n_{\text{b}0}-1} \cdot zo_{\text{b}})}{2^{n_{\text{b}0}}} \right]
\end{align*}
\]

\[
\begin{align*}
\text{tx}_{\text{b}1} &= \left[\frac{tcx_{\text{b}1} - (2^{n_{\text{b}1}-1} \cdot xo_{\text{b}})}{2^{n_{\text{b}1}}} \right] \\
\text{ty}_{\text{b}1} &= \left[\frac{tcy_{\text{b}1} - (2^{n_{\text{b}1}-1} \cdot yo_{\text{b}})}{2^{n_{\text{b}1}}} \right] \\
\text{tz}_{\text{b}1} &= \left[\frac{tcz_{\text{b}1} - (2^{n_{\text{b}1}-1} \cdot zo_{\text{b}})}{2^{n_{\text{b}1}}} \right]
\end{align*}
\]

với \(nx_{\text{b}}, ny_{\text{b}}\) và \(nz_{\text{b}}\, được xác định trong Công thức B.13, thể hiện các mức phân tách tương ứng đối với các hướng ngang (X), đường dọc (Y) và hướng trục (Z) của bảng con \(b \). Các đại lượng \((xo_{\text{b}}, yo_{\text{b}}, zo_{\text{b}})\) được cho trong Bảng B.1.
Đối với mỗi bảng con, các tọa độ này xác định các biên khối ảnh trong các miền bảng con riêng biệt.
Hơn nữa, kích thước của mỗi bảng con được cho bởi:

\[\left(tbx_1 - tbx_0, tby_1 - tby_0, tbz_1 - tbz_0 \right)\] \hspace{1cm} (B-14)

B.6 Phân chia các mức phân giải thành các phân khu

Xét một khối ảnh-đơn phân cụ thể và mức phân giải có các tọa độ mẫu biên trong miền ảnh phân giải giảm là \((tx_0, ty_0, tz_0)\) và \((tx_1 - 1, ty_1 - 1, tz_1 - 1)\), như đã được mô tả ở trên. Trường hợp với phương pháp đã được mô tả trong B.6 của ITU-T T.800 | ISO/IEC 15444-1, mức phân giải của khối ảnh-đơn phân ba chiều được chia thành các phân khu, sử dụng \(tx_0, tx_1, ty_0\) và \(ty_1\), và cả \(tz_0\) và \(tz_1\). Phân khu này được chốt tại \((0, 0, 0)\), sao cho góc trên bên trái mặt trước của phân khu bất kỳ nào đó khi được phân chia sẽ nằm tại ví trí là các bội số nguyên của \((2^{PPx}, 2^{PPy}, 2^{PPz})\) với \(PPx, PPy\) và \(PPz\) đã được báo hiệu trong các đoạn nhãn COD hoặc COC. Cúng như đối với \(PPx\) và \(PPy\), \(PPz\) có thể khác nhau đối với mỗi khối ảnh-đơn phân và mức phân giải. \(PPz\) tối thiểu phải bằng 1 đối với mọi mức phân giải \(r\), trừ khi \(r = 0\) thì \(PPz\) được phép bằng 0.

Số lượng phân khu của khối ảnh-đơn phân tại mức phân giải \(r\) được cho bởi Công thức B-16 của ITU-T T.800 | ISO/IEC 15444-1 và bởi công thức sau:

B.7 Phân chia các băng con thành các khối mã

Các băng con được phân chia thành các khối mã 3D dạng khối chữ nhật để dùng cho mục đích mô hình hóa và mã hóa hệ số. Kích thước của mỗi khối mã được xác định từ ba tham số, xcb, ycb và zcb, như đã được báo hiệu trong các đoạn nhãn COD hoặc COC. Kích thước khối mã được chốt tại một mức phân giải nhất định được xác định là $2^{\text{xcb}} \times 2^{\text{ycb}} \times 2^{\text{zcb}}$, với xcb và ycb được chỉ ra trong Công thức B-17 và B-18 của ITU-T T.800 | ISO/IEC 15444-1 và zcb' được cho bởi:

$$zcb' = \begin{cases} \min(zcb, PPz - 1) & r > 0 \\ \min(zcb, PPz) & r = 0 \end{cases}$$

(B-16)

Các công thức này phân ảnh một thực thể là kích thước khối mã bị giới hạn bởi cả kích thước phân khu và kích thước khối mã, trong đó các tham số của chúng, xcb, ycb và zcb, là động nhất cho mỗi băng con trong khung ảnh thành phần. Giống như đối với phân khu, việc phân chia khối mã được chốt tại (0, 0, 0). Do đó, tất cả các biến của khối mã tham gia vào việc phân chia sẽ có vị trí tại $x = g_x 2^{\text{xcb}}$, $y = g_y 2^{\text{ycb}}$, và $z = g_z 2^{\text{zcb}}$ với g_x, g_y và g_z là các số nguyên.

B.8 Gói tin

Mỗi dữ liệu ảnh nền thể hiện một khối ảnh, lớp, thành phần, mức phân giải và phân khu nào đó xuất hiện trong dòng mã trong một đoạn tiếp giáp đều được gọi là gói tin. Dữ liệu gói tin được phân định tại các biên 8-bit (một byte).

Nếu được xác định trong Phụ lục D, mức phân giải $r = 0$ chứa các hệ số băng con của băng $N_L LLL$, với N_L là số lượng mức phân tách được xác định trong D.3.2. Mỗi mức phân giải tiếp theo, $r > 0$, chứa các hệ số băng con của các băng con $LL|HH|XX|LL|HH|XX$, từ LLL, như được xác định trong Phụ lục D, với $n = N_L - r + 1$. Mỗi khối ảnh- thành phần có N_L mức phân tách sẽ có $(N_L + 1)$ mức phân giải.
Dữ liệu ảnh nén trong mỗi gói tin được lập thứ tự sao cho sự đóng góp từ các băng con LLL, XLL, LXL, LXX, HLL, HXL, HXL, XHL, XHX, HHL, HXX, LLH, XLH, XXH, HLH, HXH, LHH, XHH và HHH cũng xuất hiện theo thứ tự đó (tức là, thứ tự quét Morton). Trong mỗi băng con, các đóng góp của khối mã xuất hiện theo thứ tự quét màn hình, giới hạn ở các biên được thiết lập bởi phân vùng liên quan. Mức phân giải \(r = 0 \) chỉ chứa bằng \(N_{LLL} \) và các mức phân giải \(r > 0 \) có thể chỉ chứa một vài trong số \(N_{L[L|H|X][L|H|X][L|H|X]} \) bằng, trừ \(N_{LLL} \). Chỉ các khối mã chứa các mẫu từ băng con liên quan, giới hạn trong phân vùng, mới có mặt trong gói tin đó.

Dữ liệu gói tin được chứa chủ trong phần tiêu đề gói tin có cú pháp mô tả trong B.10 của ITU-T 800 | ISO/IEC 15444-1 và sau đó là thân gói tin chứa các byte mã thực tế được đóng góp bởi từng khối mã liên quan. Thứ tự xác định ở trên được tuân thủ trong việc xây dựng cả tiêu đề gói tin và thân gói tin.

B.9 Mã hóa thông tin tiêu đề gói tin

B.9.1 Cây thẻ

B.10.2 của ITU-T 800 | ISO/IEC 15444-1 mô tả các cây thẻ hai chiều. Các cây thẻ ba chiều được yêu cầu cho mục đích mở rộng ba chiều. Cây thẻ 3D là cách thể hiện mạng ba chiều của các số nguyên không âm theo phương thức phân cấp. Cây thẻ 3D là cách thể hiện mạng các mức phân giải giảm dần của mạng ba chiều, hình thành một cây. Tại mỗi điểm của cây, số nguyên nhỏ nhất của các điểm đỉnh (tối đa là 8) bên dưới được ghi lại. Ký hiệu \(q(m_x, m_y, m_z) \) là giá trị tại điểm thứ \(m_x \) từ phía trái, thứ \(m_y \) từ trên và thứ \(m_z \) từ mặt trước, ở mức thứ \(i \). Mức 0 là mức thấp nhất của cây thẻ và chứa đỉnh cao nhất.

Xem B.10.2 của ITU-T 800 | ISO/IEC 15444-1 để có thêm thông tin về cách thức mã hóa và giải mã thực tế cho các giá trị theo cây thẻ. Các mô tả trong tài liệu này không phụ thuộc vào số lượng chiều thực tế.

B.9.2 Thứ tự thông tin trong gói tin

Đây là nội dung cập nhật B.10.8 của ITU-T 800 | ISO/IEC 15444-1.

Dưới đây là thứ tự thông tin tiêu đề gói tin của gói tin thuộc một lớp, khối ảnh-thành phần, mức phân giải và phân vùng nhất định.
bit for zero or non-zero length packet
for each subband ([L | H | X][L | H | X][L | H | X])
for all code-blocks in this subband confined to the relevant precinct, in raster order
code-block inclusion bits (if not previously included then tag tree, else one bit)
if code-block included
if first instance of code-block
zero bit - planes information
number of coding passes included
increase of code-block length indicator (Lblock)
for each codeword segment
length of codeword segment

B.10 Thứ tự lũy tiến

Đối với mỗi khối ảnh-bộ phận, các gói tin đều chứa tất cả các dữ liệu ảnh nén từ một lớp, một thành phần, một mức phân giải, và một phần vùng cụ thể. Thứ tự xuất hiện của các gói tin này trong dòng mã được gọi là thứ tự lũy tiến. Việc lập thứ tự các gói tin có thể thực hiện trên bốn trục: lớp, thành phần, mức phân giải và phân khu.

Các thành phần có thể có số lượng mức phân giải khác nhau. Trong trường hợp này, mức phân giải tương ứng với băng con N_LLLL là mức phân giải đầu tiên (r = 0) đối với mọi thành phần. Các chỉ số được đồng bộ từ điểm này trở đi.

B.10.1 Xác định thứ tự lũy tiến

B.10.1.1 Lũy tiến lớp-mức phân giải-thành phần-vị trí

B.10.1.2 Lũy tiến mức phân giải-lớp-thành phần-vị trí

B.10.1.3 Lũy tiến mức phân giải-vị trí-thành phần-lớp

Lũy tiến mức phân giải-vị trí-thành phần-lớp đối với ba chiều được định nghĩa là sự chèn các gói tin theo thứ tự sau:
for each \(r = 0, \ldots, N_{\text{max}} \)
for each \(z = t_{z0}, \ldots, t_{z1} - 1 \),
for each \(y = t_{y0}, \ldots, t_{y1} - 1 \),
for each \(x = t_{x0}, \ldots, t_{x1} - 1 \),
for each \(i = 0, \ldots, Cs_i - 1 \)

if \((z \text{ divisible by } Z_{\text{Rsize}}(i) \times 2^{PPz(r,i)+N(i)-r}) \) \(\text{AND} \) \((z = t_{z0}) \) \(\text{AND} \) \((tr_{z0} \times 2^{N(i)-r}) \) NOT divisible by \(2^{PPz(r,i)+N(i)-r}) \))

if \((y \text{ divisible by } Y_{\text{Rsize}}(i) \times 2^{PPy(r,i)+N(i)-r}) \) \(\text{AND} \) \((y = t_{y0}) \) \(\text{AND} \) \((ty_{y0} \times 2^{N(i)-r}) \) NOT divisible by \(2^{PPy(r,i)+N(i)-r}) \))

if \((x \text{ divisible by } X_{\text{Rsize}}(i) \times 2^{PPx(r,i)+N(i)-r}) \) \(\text{AND} \) \((x = t_{x0}) \) \(\text{AND} \) \((tx_{x0} \times 2^{N(i)-r}) \) NOT divisible by \(2^{PPx(r,i)+N(i)-r}) \))

for the next precinct, \(k \), if one exists,

for each \(l = 0, \ldots, L - 1 \)

packet for component \(i \), resolution level \(r \), layer \(l \), and precinct \(k \)

Trong đó, \(k \) có thể thu được từ công thức sau:

\[
k = \left[\frac{x}{X_{\text{Rsize}}(i) \times 2^{N(i)-r}} \right] - \left[\frac{tr_{z0}}{PPz(r,i)} \right] + \text{numprecinbelow}(r,i) \left[\frac{y}{Y_{\text{Rsize}}(i) \times 2^{N(i)-r}} \right] - \left[\frac{try_{y0}}{PPy(r,i)} \right]
\]

\[
+ \text{numprecinbelow} \cdot \text{numprecinhigh} \left[\frac{z}{Z_{\text{Rsize}}(i) \times 2^{N(i)-r}} \right] - \left[\frac{tr_{z0}}{PPz(r,i)} \right]
\]

Để áp dụng lũy tiến này, các giá trị \(X_{\text{Rsize}}, Y_{\text{Rsize}} \) và \(Z_{\text{Rsize}} \) phải là lũy thừa hai đối với mỗi thành phần.

B.10.1.4 Lũy tiến vị trí-thành phần-mức phân giải-lớp

Lũy tiến vị trí-thành phần-mức phân giải-lớp được định nghĩa là sự chèn các gói tin theo thứ tự sau:

for each \(z = t_{z0}, \ldots, t_{z1} - 1 \),
for each \(y = t_{y0}, \ldots, t_{y1} - 1 \),
for each \(x = t_{x0}, \ldots, t_{x1} - 1 \),
for each \(i = 0, \ldots, Cs_i - 1 \)

for each \(r = 0, \ldots, N_{\text{max}} \) where \(N_i \) is the number of decomposition levels for component \(i \),

if \((z \text{ divisible by } Z_{\text{Rsize}}(i) \times 2^{PPz(r,i)+N(i)-r}) \) \(\text{AND} \) \((z = t_{z0}) \) \(\text{AND} \) \((tr_{z0} \times 2^{N(i)-r}) \) NOT divisible by \(2^{PPz(r,i)+N(i)-r}) \))

if \((y \text{ divisible by } Y_{\text{Rsize}}(i) \times 2^{PPy(r,i)+N(i)-r}) \) \(\text{AND} \) \((y = t_{y0}) \) \(\text{AND} \) \((ty_{y0} \times 2^{N(i)-r}) \) NOT divisible by \(2^{PPy(r,i)+N(i)-r}) \))

if \((x \text{ divisible by } X_{\text{Rsize}}(i) \times 2^{PPx(r,i)+N(i)-r}) \) \(\text{AND} \) \((x = t_{x0}) \) \(\text{AND} \) \((tx_{x0} \times 2^{N(i)-r}) \) NOT divisible by \(2^{PPx(r,i)+N(i)-r}) \))

for the next precinct, \(k \), if one exists,

for each \(l = 0, \ldots, L - 1 \)

packet for component \(i \), resolution level \(r \), layer \(l \), and precinct \(k \)
Trong đó, \(k \) có thể được nhận từ Công thức B-17. Để áp dụng lũy tiến này, các giá trị \(X_{Rsiz}, Y_{Rsiz} \) và \(Z_{Rsiz} \) phải là lũy thừa hai đối với mỗi thành phần.

B.10.1.5 Lũy tiến thành phần-vị trí-tri-mức phân giải-lớp

Lũy tiến thành phần-vị trí-tri-mức phân giải-lớp được định nghĩa là sự chèn các gói tin theo thứ tự sau:

- for each \(i = 0, \ldots, C_{siz} - 1 \)
- for each \(z = t_{z0}, \ldots, t_{z1} - 1 \)
- for each \(y = t_{y0}, \ldots, t_{y1} - 1 \)
- for each \(x = t_{x0}, \ldots, t_{x1} - 1 \)
- for each \(r = 0, \ldots, N_{\text{max}} \), where \(N_i \) is the number of decomposition levels for component \(i \),
 - if \((z \text{ divisible by } Z_{Rsiz}(i) \times 2^{P_{Pz}(i) \times N_i (i) - r}) \text{ OR } ((z = t_{z0}) \text{ AND } (t_{rz} \times 2^{N_i (i) - r}) \text{ NOT divisible by } 2^{P_{Pz}(i) \times N_i (i) - r}))\)
 - if \((y \text{ divisible by } Y_{Rsiz}(i) \times 2^{P_{Py}(i) \times N_i (i) - r}) \text{ OR } ((y = t_{y0}) \text{ AND } (t_{ry} \times 2^{N_i (i) - r}) \text{ NOT divisible by } 2^{P_{Py}(i) \times N_i (i) - r}))\)
 - if \((x \text{ divisible by } X_{Rsiz}(i) \times 2^{P_{Px}(i) \times N_i (i) - r}) \text{ OR } ((x = t_{x0}) \text{ AND } (t_{rx} \times 2^{N_i (i) - r}) \text{ NOT divisible by } 2^{P_{Px}(i) \times N_i (i) - r}))\)
 - for the next precinct, \(k \), if one exists,
 - for each \(l = 0, \ldots, L - 1 \)
 - packet for component \(i \), resolution level \(r \), layer \(l \), and precinct \(k \)

Trong đó, \(k \) có thể nhận được từ Công thức B-17.
Phụ lục C

(Quy định)

Mô hình hóa bit hệ số

C.1. Giới thiệu

Trong phụ lục này và các điều nhỏ của phụ lục, các sơ đồ và bảng chỉ có tính bắt buộc nếu chúng xác định một đầu ra mà các triển khai tùy chọn phải tuân thủ. Phụ lục này chính thức mở rộng Phụ lục D của ITU-T.800 | ISO/IEC 15444-1 thêm tính năng mã hóa khối.

Phụ lục này để cập đến việc mô hình hóa và quét các bit hệ số biến đổi.

Các khối mã (xem Phụ lục B) được mã hóa bằng bit tại một thời điểm tính từ mặt phẳng bit có trọng số cao nhất có một phần tử khác 0 đến mặt phẳng bit có trọng số thấp nhất. Đối với mỗi mặt phẳng bit trong khối mã, một kiểu quét khối mã đặc biệt được sử dụng cho mỗi quá trình mã hóa trong ba quá trình mã hóa. Mỗi bit hệ số trong mặt phẳng bit chỉ xuất hiện trong một trong ba thế mã hóa được gọi là lan truyền có nghĩa, tinh chỉnh biên độ và làm sạch. Đối với mỗi thế, các ngữ cảnh được thiết lập cho bộ mã hóa và giải mã số học, CX, cùng với dòng bit, CD (xem C.3 của ITU-T.800 | ISO/IEC 15444-1).

C.2. Kiểu quét khối mã trong các khối mã, phần mở rộng

C.3. Các cập nhật về mô hình ngữ cảnh

Đối với việc mô hình hóa ngữ cảnh, mô hình được mở tả trong Phụ lục D của ITU-T.800 | ISO/IEC 15444-1 được thay đổi theo các quá trình mã hóa lan truyền có nghĩa và làm sạch.

Vectơ ngữ cảnh đối với một hệ số hiện tại cụ thể là vectơ nhị phân gồm các trạng thái trọng số của 8 hệ số bên cạnh gần nhất trong mặt phẳng XY, như mô tả trong Hình D.2 của ITU-T.800 | ISO/IEC 15444-1. Mỗi hệ số bên cạnh gần nhất nằm ngoài khối mã của hệ số hiện tại đều được coi là không có nghĩa (tức là, chúng được coi như có trạng thái trọng số bằng 0) khi thiết lập vectơ ngữ cảnh để giải mã hệ số hiện tại.

Thay cho Bảng D.1 của ITU-T.800 | ISO/IEC 15444-1, các ngữ cảnh liên quan được quy định trong Bảng C.1 bên dưới.
Bảng C.1 – Các ngữ cảnh đối với các quá trình mã hóa lan truyền có nghĩa và làm sạch

<table>
<thead>
<tr>
<th>Các băng con có định hướng chính</th>
<th>Các băng con có định hướng chính</th>
<th>Các băng con có định hướng chính</th>
<th>Nhãn ngữ cảnh</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΣH_i</td>
<td>ΣV_i</td>
<td>ΣD_i</td>
<td>ΣH_i</td>
</tr>
<tr>
<td>2</td>
<td>xb)</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>1</td>
<td>≥ 1</td>
<td>x</td>
<td>≥ 1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>≥ 1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>x</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>x</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>≥ 2</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

b) $x = “không quan tâm”$.
Phụ lục D

(Quy định)

Biến đổi sóng con rời rạc của các khối ảnh - thành phần

D.1 Giới thiệu

Trong phụ lục này và các điều nhỏ của phụ lục, các lưu đồ và bảng chỉ có tính bắt buộc khi chúng chỉ rõ đầu ra mà các triển khai khác sẽ phải tuân thủ.

D.2 Các tham số khối ảnh - thành phần

Xét khối ảnh - thành phần được xác định bởi các tọa độ tcx_0, tcx_1, tcy_0, tcy_1, tcz_0 và tcz_1 cho trong Công thức B-12 củaITU-T T.800 | ISO/IEC 15444-1 và Công thức B-9 của tiêu chuẩn này. Khi đó, các tọa độ (x, y, z) của khối ảnh - thành phần (có các giá trị mẫu $I(x, y, z)$) nằm trong dải xác định bởi:

$$tcx_0 < x < tcy_1, tcy_0 < y < tcy_1 \text{ và } tcz_0 < z < tcz_1$$ \hspace{1cm} (D-1)

D.3 Biến đổi sóng con rời rạc

D.3.1 Lọc thông thấp và thông cao (tham khảo)

D.3.2 Các mức phân tách

Mỗi khối ảnh - thành phần được biến đổi thành một tập các tín hiệu bằng con ba chiều (được gọi là các bảng con), mỗi tín hiệu bằng con thể hiện hoạt động của tín hiệu trong các bảng tần khác nhau, tại các phân giải không gian khác nhau. N_{lx} biểu thị số lượng mức phân tách theo chiều ngang, N_{ly} biểu thị số mức phân tách theo chiều dọc và N_{lz} biểu thị số lượng mức phân tách theo chiều trục. Trong tiêu chuẩn này, $N_{l} = \max(N_{lx}, N_{ly}, N_{lz})$.

D.3.3 Các bộ lọc sóng con rời rạc (tham khảo)

Xem F.2.3 củaITU-T T.800 | ISO/IEC 15444-1.
D.4 Biến đổi sóng con rời rạc nghịch

D.4.1 Thủ tục IDWT

Biến đổi sóng con rời rạc nghịch (IDWT) biến đổi một tập các băng con, \(a_b(u_b, v_b, w_b) \) thành một khối ảnh thành phần dung mức DC, \(I(x, y, z) \) (thủ tục IDWT). Thủ tục IDWT (xem Hình D.1) có đầu vào là tập các tham số \(N_L, N_Y \) và \(N_Z \), chúng thể hiện số lượng mức phân tách ở mỗi chiều của ba chiều và được báo hiệu trong các nhãn COD hoặc COC (xem A.2.2 và A.2.3).

\[
\begin{align*}
& a_b(u_b, v_b, w_b) \\
& N_L \\
& N_Y \\
& N_Z \\
& \text{IDWT} \\
& I(x, y, z)
\end{align*}
\]

Hình D.1 – Các đầu vào và đầu ra của thủ tục IDWT

Các băng con được gán nhận theo cách sau: một chỉ số \(\text{lev} \) tương ứng với mức phân tách, tiếp đó là ba chữ cái trong số L, H hoặc X. Do đó, mỗi nhân bằng con sẽ có dạng \(\text{lev}[L|H|X][L|H|X][L|H|X] \).

Băng con \(b = \text{lev}[L|X][L|X][L|X] \) tương ứng với một phiên bản giảm kích thước của băng con \((\text{lev} - 1)[L|X][L|X][L|X] \) qua lọc thông thấp cho các hướng (ngang, dọc và/hoặc trục) thể hiện bằng chữ cái L.

Nếu tại mức phân tách \((\text{lev} - 1) \), một hướng nào đó không được lọc thông thấp (tức là, chữ cái X được sử dụng), thì tín hiệu có thể không được lọc thông thấp nữa ở mọi mức phân tách cao hơn tiếp theo, \(n > (\text{lev} - 1) \). Do đó, khi số lượng phân tách ở hướng \(d \) (với \(d \) là X, Y hoặc Z), \(N_{L_d} \), nhỏ hơn \(\text{lev} \) thì loại phân tách của chiều tương ứng là X; ngược lại sẽ là L. Băng con \(b = 0LLL \) tương ứng với khối ảnh thành phần ban đầu.

Tương tự như F.3.1 của ITU-T T.800 | ISO/IEC 15444-1, các băng con được báo hiệu trong dòng mã theo Thur tự như sau:

\[
\begin{align*}
& N_{LLL}, N_{XLL}, N_{LXL}, N_{LLX}, N_{LXX}, N_{XLX}, N_{XXL}, N_{HLL}, N_{LHL}, N_{HXL}, N_{LXL}, N_{XLH}, N_{LXX}, N_{LXL}, N_{XLH}, N_{XXH}, N_{LLH}, N_{XLH}, N_{LXX}, N_{LXL}, N_{XLH}, N_{XXH}, N_{LHH}, (N_{L-1}HLL), (N_{L-1}HXL), (N_{L-1}HXL), (N_{L-1}HXX), (N_{L-1}LHXL), (N_{L-1}LHXL), (N_{L-1}LHXX), (N_{L-1}LXXH), ..., 1XHX, 1HHL, 1HHX, 1HHL, 1HLH, 1HHH.
\end{align*}
\]

Lưu ý rằng, trong danh sách các băng con ở trên, chỉ các băng con tồn tại, có các tham số \(N_L, N_{L_Y} \) và \(N_{L_Z} \), là sẽ có mặt trong dòng mã. Đây là các băng con chính xác cần để phục dụng đầy đủ khối ảnh thành phần ban đầu.
Hình D.2 – Thủ tục IDWT

Cuối cùng, bảng con $a_{LLL}(u_{LLL},u_{LLL},v_{LLL},w_{LLL},w_{LLL},w_{LLL})$ sẽ là mảng đầu ra $I(x, y, z)$.

Như đã được định nghĩa trong Công thức B-12, chỉ số của các hệ số bảng con đối với một bảng con bất kỳ sẽ nằm trong dải được xác định bởi:

$$tb_x \leq u_b < tb_x, tb_y \leq v < tb_y, v_0 \leq w_b < tb_z$$ (D-2)

D.4.2 Thủ tục 3D_SR

Thủ tục 3D_SR thực hiện phục dựng bảng con $a_{(lev-1)[L[X][L[X][L[X]}(u,v,w)$ từ các bảng con $a_{lev[L[X][L[X][L[X]}(u,v,w)$ nhất định. Đầu vào của 3D_SR là tổng số lượng hệ số của bảng con $(lev-1)[L[X][L[X][L[X]$ được phục dựng và bảng tổng các tổng số lượng hệ số của các bảng con được sử dụng.

Hình D.3 – Các đầu vào và đầu ra của thủ tục 3D_SR

Các bảng con $a_{(lev-1)[L[X][L[X][L[X]}(u,v,w)$ được hợp nhất thành mảng $a(u,v,w)$ bằng thủ tục TO_ARRAY. Mảng tạm thời này được sử dụng để khởi phục các kết quả trung gian và được cập nhật ngay khi thủ tục 3D_SR được thực thi. Tiếp theo, thủ tục 3D_SR sẽ phục dựng mỗi hướng d, trong đó $lev < N_{Ld} \leq N_L$, với d là X, Y hoặc Z, bằng các thủ tục tương ứng HOR_SR, VER_SR và AXIAL_SR. Kết quả cuối cùng là bảng con $a_{(lev-1)[L[X][L[X][L[X]}(u,v,w)$. Hình D.4 mô tả chi tiết thủ tục 3D_SR.
Hình D.4 – Thủ tục 3D_SR

D.4.3 Thủ tục TO_ARRAY

Như mô tả trong Hình D.6, thủ tục TO_ARRAY thực hiện với tất cả các bảng con của mức phân tách lev và hợp nhất chúng thành một mảng ba chiều \(a(u,v,w) \). Thủ tục này có đầu vào là các bảng con \(a_{\text{lev}}[L][L][L] \) và khoảng hệ số theo chiều ngang, dọc và trực của bảng con \(a_{\text{lev}-1}[L][L][L] \) là \(u_0, u_1, v_0, v_1, w_0, w_1 \). Mảng đầu ra có khoảng hệ số theo chiều ngang, dọc và trực là \(u_0 \leq u < u_1, v_0 \leq v < v_1 \) và \(w_0 \leq w < w_1 \).
Hình D.7 – Các tham số của thủ tục 1D_INTERLEAVE

D.4.4 Thủ tục 1D_INTERLEAVE

Nghử được thể hiện trên Hình D.7, thủ tục 1D_INTERLEAVE chèn các hệ số thông thấp và thông cao của biên đối sóng con. Thủ tục này có đầu vào là một tín hiệu một chiều Y(n) và sắp xếp lại các giá trị hệ số trong tín hiệu bằng cách chèn chúng. Các giá trị của i_0 và i_1 tương ứng được sử dụng bởi thủ tục 1D_INTERLEAVE thể hiện sự bắt đầu và kết thúc của tín hiệu. Cách thức mà tín hiệu được chèn để hình thành đầu ra được mô tả bởi thủ tục 1D_INTERLEAVE, như trong Hình D.8.
Hình D.8 – Thủ tục 1D_INTERLEAVE

D.4.5 Thủ tục HOR_SR

Thủ tục HOR_SR thực hiện việc chèn và phục dựng bằng con theo chiều ngang của mảng hệ số ba chiều. Thủ tục này có đầu vào là mảng ba chiều $a(u,v,w)$, với khoảng hệ số theo chiều ngang, dọc và trực của mảng là $u_0 \leq u < u_1$, $v_0 \leq v < v_1$ và $w_0 \leq w < w_1$ (xem Hình D.9) và sinh ra đầu ra là một phiên bản lọc theo chiều ngang của mảng đầu vào cho từng hàng và từng lát ảnh.

Hình D.9 – Các đầu vào và đầu ra của thủ tục HOR_SR

Như thể hiện trên Hình D.10, thủ tục HOR_SR áp dụng việc phục dựng bằng con một chiều (thủ tục 1D_SR) cho mỗi hàng của mảng đầu vào $a(u,v,w)$, và khởi phục kết quả trở lại mỗi hàng.
D.4.6 Thủ tục VER_SR

Thủ tục VER_SR thực hiện việc chèn và phục dựng bằng con theo chiều dọc của mảng hệ số ba chiều. Thủ tục này có đầu vào là mảng ba chiều \(a(u,v,w) \), với khoảng hệ số theo chiều ngang, dọc và trục của mảng là \(u_0 \leq u < u_1, v_0 \leq v < v_1 \) và \(w_0 \leq w < w_1 \) (xem Hình D.11) và sinh ra đầu ra là phiên bản lọc theo chiều ngang của mảng đầu vào cho từng cột và từng lát ảnh.

Hình D.11, thủ tục VER_SR áp dụng việc phục dựng bằng con một chiều (thủ tục 1D_SR) cho mỗi cột của mảng đầu vào \(a(u,v,w) \), và khối phục kết quả trở lại mỗi cột.
Thủ tục AXIAL_SR thực hiện việc chèn và phục dựng bằng con theo trục của mảng hệ số ba chiều.

Thủ tục này có đầu vào là một mảng ba chiều \(a(u,v,w) \), với khoảng hệ số theo chiều ngang, dọc và trục của mảng là

\[
u_0 \leq u < u_1, \quad v_0 \leq v < v_1, \quad w_0 \leq w < w_1
\]

(vàm Hình D.13) và sinh ra đầu ra là phiên bản lọc theo chiều ngang của mảng đầu vào cho từng hàng và từng cột.

Như được mô tả trên Hình D.14, thủ tục AXIAL_SR áp dụng việc phục dựng bằng con một chiều (thủ tục 1D_SR) cho mỗi chiều sâu của mảng đầu vào \(a(u,v,w) \), và khởi phục kết quả trở lại trong mỗi chiều sâu.
D.4.8 Thủ tục 1D_SR

D.5 Biến đổi thuận (tham khảo)

D.5.1 Thủ tục FDWT (tham khảo)

Biến đổi sóng con rời rạc thuận (FDWT) biến đổi các mẫu khối ảnh thành phần tích năng DC $I(x,y,z)$ thành một tập các băng con có các hệ số $a_0(u_b,v_b,w_b)$ (thủ tục FDWT). Thủ tục FDWT (xem Hình D.15) có đầu vào là số lượng tích năng thủ vô trong mỗi chiều của ba chiều và đã được báo hiệu trong các nhãn COD hoặc COC (xem A.2.2 và A.2.3).

Như trong F.4.1 của ITU-T T.800 | ISO/IEC 15444-1 đã đề cập, thủ tục FDWT bắt đầu với việc khởi tạo biến lev (mức phân tách hiện tại) thành 1 và phân bổ mảng ba chiều $I(x,y,z)$ thành một tập các băng con $a_{LLL}(u_{LLL},v_{LLL},w_{LLL},u_{LLL},v_{LLL},w_{LLL})$. Thủ tục 3D_SD (xem D.5.2) được thực hiện tại mọi mức lev, trong đó mức lev tăng thêm một mỗi lần lặp cho đến khi N_x lần lặp hoàn tất. Thủ 3D_SD được lặp lại trên toàn băng con $(lev – 1)[L|X][L|X][L|X]$ được sinh ra tại mỗi lần lặp.

Toàn bộ thủ tục FDWT được mô tả chi tiết trên Hình D.16.

Tương tự với những gì đã được mô tả trong Phụ lục F của ITU-T T.800 | ISO/IEC 15444-1, các băng con được sinh ra sẽ được báo hiệu trong dòng mã theo thủ tục dưới đây:

$N_{LLL}, N_{XLL}, N_{LXL}, N_{LLL}, N_{LXX}, N_{XXL}, N_{HLL}, N_{HXL}, N_{HLX}, N_{HXX}, N_{LLH}, N_{LXL}, N_{LXH}, N_{LXX}, N_{HXH}, N_{LLH}, N_{LHL}, N_{XHL}, N_{XHH}, (N_x – 1)HHL, (N_x – 1)HXL, (N_x – 1)LXL, (N_y – 1)LHX, (N_x – 1)LHH, (N_x – 1)HXL, ... , 1XH, 1HHL, 1HHX, 1LLH, 1LXH, 1XXH, 1HLH, 1XHH, 1LHH, 1HHH$.

Lưu ý rằng, trong danh sách các băng con ở trên, chỉ các băng con tồn tại, có các tham số N_x, N_y và N_z, là sẽ có mặt trong dòng mã. Dày là các băng con chính xác cần thiết để phục dụng đầy đủ khối ảnh-thành phần. Cũng lưu ý thêm rằng, $N_{[L|X][L|X][L|X]}$ chỉ là băng con loại $[L|X][L|X][L|X]$ đã được báo hiệu trong dòng mã.

Hình D.15 – Các đầu vào và đầu ra của thủ tục FDWT
D.5.2 Thử tục 3D_SD (tham khảo)

Thử tục 3D_SD thực hiện việc phân tách mảng hệ số hoặc mẫu ba chiều \(a_{lev-1}(x,y,z) \) thành nhiều nhóm các hệ số bằng con \(a_{lev}(u,v,w) \), tùy thuộc vào số lượng phân tách \(N_{LX}, N_{LY} \) và \(N_{LZ} \).

Tổng số lượng hệ số của bảng \((lev-1)\[L|X][L|X][L|X]\) bằng tổng các tổng số lượng hệ số của các bảng \(lev\[L|H|X][L|H|X][L|H|X]\) sinh ra từ thủ tục 3D_SD.

Hình D.17 mô tả các tham số đầu vào và đầu ra của thủ tục 3D_SD.

Hình D.17 – Các đầu vào và đầu ra của thủ tục 3D_SD

Thử tục 3D_SR (xem Hình D.18) phân tách mỗi hướng, \(d \), trong đó mỗi hướng có \(lev < N_{Ld} \leq N_{L} \), với \(d \) là X, Y hoặc Z, tương ứng bằng các thủ tục HOR_SD, VER_SD và AXIAL_SD. Tiếp theo, mảng ba chiều \(a(u,v,w) \) được chia thành các bảng con được phục dựng khác nhau \(a_{lev}(u,v,w) \). Trong các bảng con này, bảng \(lev\[L|X][L|X][L|X]\) được sử dụng ở lần lập tiếp theo của thủ tục FDWT để tiếp tục được phân tách (miễn sao có ít hơn \(N_{I} \) lần lập). Các bảng con khác tiếp tục được xử lý để báo hiệu trong dòng mã.
D.5.3 Thủ tục TO_SUBBANDS (tham khảo)

Thủ tục TO_SUBBANDS có đầu vào là mảng ba chiều \(a(u,v,w) \) và đầu ra là các băng con sau khi đã được hoàn lại, như được mô tả trong Hình D.6. Mảng \(a(u,v,w) \) có khoảng hệ số theo chiều ngang, độc và trực là \(u_0 \leq u < u_1, v_0 \leq v < v_1 \) và \(w_0 \leq w < w_1 \).

D.5.4 Thủ tục AXIAL_SD (tham khảo)

Thủ tục AXIAL_SD thực hiện việc phân tách băng con của mảng hệ số ba chiều \(a(u,v,w) \). Thủ tục này có đầu vào là mảng ba chiều \(a(u,v,w) \), với khoảng hệ số theo chiều ngang, độc và trực của mảng là \(u_0 < u < u_1, v_0 \leq v < v_1 \) và \(w_0 \leq w < w_1 \) (xem Hình D.19) và sinh ra đầu ra là phiên bản lọc theo trục của mảng đầu vào, cho từng hàng và từng cột. Sau phần tách là quá trình giải lập.

Nếu được mô tả trên Hình D.20, thủ tục AXIAL_SD áp dụng việc phân tách băng con một chiều (thủ tục 1D_SD) cho mỗi chiều sâu của mảng đầu vào \(a(u,v,w) \), và khối phục kết quả trở lại cho mỗi chiều sâu.
D.5.5 Thủ tục VER_SD (tham khảo)

Thủ tục VER_SD thực hiện việc phân tách bằng con của mảng hệ số ba chiều theo chiều dọc. Thủ tục này có đầu vào là mảng ba chiều \(a(u,v,w)\), với khoảng hệ số theo chiều ngang, dọc và trục của mảng là \(0 \leq u < u_1,\) \(0 \leq v < v_1\) và \(0 \leq w < w_1\) (xem Hình D.21) và sinh ra đầu ra là một phiên bản lọc theo chiều dọc của mảng đầu vào, cho từng cột và từng lát ảnh. Sau phân tách là quá trình giải chèn.

Như được mô tả trên Hình D.22, thủ tục VER_SD áp dụng việc phân tách bằng con một chiều (thủ tục 1D_SD cho mỗi cột của mảng đầu vào \(a(u,v,w)\)) và khởi phục kết quả trở lại trong mỗi cột.
Hình D.21 – Các đầu vào và đầu ra của thủ tục VER_SD

D.5.6 Thủ tục HOR_SD (tham khảo)

Thủ tục HOR_SD thực hiện việc phân tách bằng con của mảng hệ số ba chiều theo chiều ngang. Thủ tục này có đầu vào là mảng ba chiều $a(u, v, w)$, với khoảng hệ số theo chiều ngang, dọc và trục của mảng là $u_0 \leq u < u_1$, $v_0 \leq v < v_1$ và $w_0 \leq w < w_1$ (xem Hình D.23) và sinh ra đầu ra là một phiên bản lọc...
theo chiều ngang của mảng đầu vào, cho từng hàng và từng lát ảnh. Sau phân tích là quá trình giải chèn.

Như được mô tả trên Hình D.24, thủ tục HOR_SD áp dụng việc phân tích bằng con một chiều (thủ tục 1D_SD) lên mỗi hàng của mảng đầu vào $a(u,v,w)$, và khôi phục kết quả trở lại trên mỗi hàng.

Hình D.23 – Các đầu vào và đầu ra của thủ tục HOR_SD

Hình D.24 – Thử tục HOR_SD
D.5.7 Thủ tục 1D_DEINTERLEAVE (tham khảo)

Như được mô tả trên Hình D.25, thủ tục 1D_DEINTERLEAVE giải chèn các hệ số thông thấp và thông cao của biến đổi sóng con. Thủ tục này có đầu vào là tín hiệu một chiều, X(n), và sắp xếp lại các giá trị hệ số trong tín hiệu bằng cách giải chèn chúng. Các giá trị của i_0 và i_1 tương ứng được sử dụng bởi thủ tục 1D_DEINTERLEAVE thể hiện sự bắt đầu và kết thúc của tín hiệu. Cách thức mà tín hiệu được giải chèn để hình thành đầu ra được mô tả bởi thủ tục 1D_DEINTERLEAVE như trên Hình D.26.

Hình D.25 – Các tham số của thủ tục 1D_DEINTERLEAVE

Hình D.26 – Thủ tục 1D_DEINTERLEAVE
D.5.8 Thủ tục 1D_SD (tham khảo)

Phụ lục E
(Quy định)
Lượng tử hóa

E.1 Giới thiệu
Trong phụ lục này và các điều nhỏ của phụ lục, các lưu đồ và bảng chỉ có tính bắt buộc khi chúng chỉ rõ đầu ra mà các triển khai khác phải tuân thủ. Phụ lục này quy định các khía cạnh liên quan đến sự lượng tử hóa của các hệ số biến đổi ảnh thành phần. Các khía cạnh lượng tử hóa đã được chỉ rõ trong Phụ lục E của ITU-T 800 | ISO/IEC 15444-1, nhưng sẽ được mở rộng để định nghĩa sự lượng tử hóa các phần tách ba chiều trong tiêu chuẩn này.

E.2 Các biến thể của thủ tục lượng tử hóa nghịch
Thủ tục lượng tử hóa sẽ phải giống như đã quy định trong Phụ lục E của ITU-T 800 | ISO/IEC 15444-1, ngoại trừ những sửa đổi ở đây nhằm phù hợp với các cấu trúc phân tách ba chiều của tiêu chuẩn này.

Các băng con cũng giống như đã được chỉ rõ trong Phụ lục E của ITU-T 800 | ISO/IEC 15444-1, ngoại trừ việc có nhiều băng con hơn cho các phân tách ba chiều (tức là, [L|X|H][L|X|H][L|X|H] trừ XXX).

Các độ lợi băng con được chỉ rõ trong Bảng E.1 dưới đây thay cho Bảng E.1 của ITU-T 800 | ISO/IEC 15444-1.

Bảng E.1 – Đố lợi băng con

<table>
<thead>
<tr>
<th>Loại băng con</th>
<th>Độ lợi (l_{ib})</th>
<th>(\log_2(độ lợi l_{ib}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>LLL, LXX, XLL, XXL, LXL, LLX, XLL</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>H[L][X][L,X], [L,X]H[L,X], [L,X][L,X]H</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>HH[L,X], H[L,X]H, [L,X]HH</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>HHH</td>
<td>8</td>
<td>3</td>
</tr>
</tbody>
</table>

Đối với các cấu trúc phân tách ba chiều như đã được xác định trong tiêu chuẩn này, giá trị \(n_b \) trong Công thức E-5 của ITU-T 800 | ISO/IEC 15444-1 biểu thị số lượng mức phân tách lớn nhất trong mỗi
hướng không gian từ khối ảnh thành phần ban đầu đến bàng con b (tức là, $n_b = \max(n_{x_b}, n_{y_b}, n_{z_b})$, với n_{x_b}, n_{y_b} và n_{z_b} được xác định bởi Công thức B-13).
Phụ lục F

(Qúy định)

Mã hóa ảnh theo vùng quan tâm, phần mở rộng

F.1 Giới thiệu

Phụ lục này mở tả công nghệ vùng quan tâm (ROI) ba chiều. ROI là một phần của ảnh và được mã hóa với độ trung thực cao hơn phần còn lại của ảnh (ảnh nền). Sự mã hóa cũng được thực hiện theo cách thức sao cho thông tin liên quan đến ROI sẽ đến trước thông tin liên quan đến ảnh nền.

F.2 Giải mã ROI

Các thủ tục được chỉ rõ trong điều này được áp dụng chỉ trong trường hợp có mặt đoạn nhãn RGN (xem A.2.4), tức là thể hiện sự có mặt của ROI được mã hóa bằng phương pháp dựa trên Maxshift hoặc Scaling.

F.2.1 Giải mã ROI bằng phương pháp Maxshift

Thủ tục này tổ chức lại các bit có trọng số của các hệ số ROI và các hệ số ảnh nền. Thủ tục thực hiện theo các bước sau:

1) Nhận giá trị phân cấp, s, từ tham số SPrgn của đoạn nhãn RGN trong dòng mã (xem A.2.4). Các bước tiếp theo (2, 3 và 4) được áp dụng cho từng hệ số của băng con b.

2) Nếu \(N_b(u,v,w) < M_b \) (xem các định nghĩa của \(N_b \) trong D.2.1 của ITU-T T.800 | ISO/IEC 15444-1 và \(M_b \) trong Công thức E-2 của ITU-T T.800 | ISO/IEC 15444-1), thì sẽ không có sửa đổi nào được thực hiện.

3) Nếu \(N_b(u,v,w) \geq M_b \) và nếu ít nhất có một trong số \(M_b \) MSB đầu tiên (\(i = 1, \ldots, M_b \)) khác không, thì giá trị cuối cùng \(N_b(u,v,w) \) được cập nhật thành \(N_b(u,v,w) = M_b \).

4) Nếu \(N_b(u,v,w) \geq M_b \) và nếu tất cả \(M_b \) MSB đầu tiên bằng 0, thì thực hiện các sửa đổi sau:
 i) loại bỏ s MSB đầu tiên và dịch các MSB còn lại s vị trí, như được mô tả trong Công thức F-1, với \(i = 1, \ldots, M_b \)

 \[
 MSB_i(b,u,v,w) = \begin{cases}
 MSB_{i+s}(b,u,v,w) & i + s \leq N_b(u,v,w) \\
 0 & i + s > N_b(u,v,w)
 \end{cases} \quad (F-1)
 \]

 ii) cập nhật giá trị cuối cùng \(N_b(u,v,w) \) như cho bởi công thức sau:

 \[
 N_b(u,v,w) = \max \left(0, N_b(u,v,w) - s \right) \quad (F-2)
 \]
F.2.2 Giải mã ROI bằng phương pháp Scaling

Thủ tục này tổ chức lại các bit trọng số của các hệ số ROI và các hệ số ảnh nền. Thủ tục này thực hiện theo các bước sau:

1) Nhận thông tin kiểu tương ứng và giá trị phân cấp, s, từ đoạn nhãn RGN cho từng ROI. Sau đó, các bước từ 2 đến 6 được áp dụng cho từng hệ số (u,v,w) của bằng con b.

2) Tạo mặt nạ ROI \{M(u,v,w)\} cho tất cả ROI, xem F.4.2 để có thông tin chi tiết về cách tạo mặt nạ ROI.

3) Đối với mỗi khối mã, tìm giá trị phân cấp lớn nhất \(s_{\text{max}}\) cho từng hệ số (u,v,w).

4) Đối với mỗi hệ số trong từng khối mã, tìm giá trị phân cấp cao nhất và đặt \(s(u,v,w)\) là:

\[
s(u,v,w) = s_{\text{max}} - \max \left(s_j \cdot M_j(u,v,w) \right) \quad \text{với } i = 0 \ldots (s \text{ số lượng ROI} - 1).
\]

5) Đối với mỗi hệ số (u,v,w), loại bỏ \(s(u,v,w)\) MSB đầu tiên và dịch các MSB còn lại thêm \(s(u,v,w)\) vị trí, như được mô tả trong Công thức F.4, với \(i = 1, \ldots, M_b\):

\[
\text{MSB}_i(b,u,v,w) = \begin{cases}
\text{MSB}_{i-s(u,v,w)}(u,v,w) & i + s(u,v,w) \leq N_b(u,v,w) \\
0 & i + s(u,v,w) > N_b(u,v,w)
\end{cases}
\]

6) Cập nhật giá trị của \(N_b(u,v,w)\) như cho trong Công thức F.5:

\[
N'_b(u,v,w) = \max \left(0, N_b(u,v,w) - s(u,v,w) \right)
\]

F.3 Mã hóa ROI (tham khảo)

Điều này mô tả cách thức mã hóa ảnh có một hoặc nhiều ROI bằng phương pháp dựa trên Maxshift hoặc Scaling. Mã hóa được mô tả ở đây chỉ là thông tin tham khảo. Ở phía bộ mã hóa, mặt nạ ROI được tạo ra thể hiện các hệ số biến đổi lượng tử hóa phải được mã hóa với chất lượng tốt nhất (gần như không tổn thất). Mặt nạ ROI là một bản đồ bit mô tả các hệ số này.

F.3.1 Mô tả phương pháp Maxshift (tham khảo)

Các hệ số biến đổi lượng tử nằm ngoài mặt nạ ROI, được gọi là các hệ số ảnh nền, được phân cấp giảm dần sao cho các bit liên quan đến ROI đều được đặt trong các mặt phẳng bit cao hơn so với ảnh nền. Điều này nghĩa là khi bộ mã hóa và giải mã entropy mã hóa các hệ số biến đổi lượng từ thì các mặt phẳng bit liên quan đến ROI sẽ được mã hóa trước thô ràng liên quan đến ảnh nền. Xem F.4.1 về tạo mặt nạ ROI bằng phương pháp Maxshift.

Phương pháp Maxshift có thể còn được mô tả bằng các bước sau:

1) Tạo mặt nạ ROI, \(M(x, y, z)\), xem F.4.1.

2) Tìm giá trị phân cấp s (xem F.3.2).

3) Cộng s LSB vào mỗi hệ số \(|q_b(u,v,w)|\). Số lượng mặt phẳng bit đổi \(M'_b\) khi đó sẽ là:

\[
M'_b = M_b + s
\]
Với M_b được cho bởi Công thức E-2 của ITU-T T.800 | ISO/IEC 15444-1 và giá trị mới của mỗi hệ số sẽ được cho bởi:

$$|q_b(u,v,w)| = |q_b(u,v,w)| \cdot 2^s$$ \hspace{1cm} (F-7)

4) Giảm tất cả các hệ số ảnh nền được cho bởi $M(x,y,z)$ sử dụng giá trị phân cấp s (xem F.3.2). Do đó, nếu $|q_b(u,v,w)|$ là hệ số ảnh nền được cho bởi $M(x, y, z)$, thì:

$$|q_b(u,v,w)| = \frac{|q_b(u,v,w)|}{2^s}$$ \hspace{1cm} (F-8)

5) Viết giá trị phân cấp s vào dòng mã sử dụng tham số SPrgn của đoạn nhãn RGN.

Sau các bước này thì các hệ số biến đổi được lượng tử từ đã được mã hóa entropy như bình thường.

F.3.2 Lựa chọn giá trị phân cấp, s, cho phương pháp Maxshift tại phía bộ mã hóa (tham khảo)

Giá trị phân cấp, s, có thể được lựa chọn sao cho Công thức F-9 đúng với đối với mọi hệ số hình nền, $qBG(x,y,z)$, ở mỗi khối mà trong thành phần hiện tại, với $\max(M_b)$ là số lượng mặt phẳng bit biến đổi lớn nhất (xem Công thức E-1 của ITU-T T.800 | ISO/IEC 15444-1).

$$s \geq \max(M_b)$$ \hspace{1cm} (F-9)

Diệu này đảm bảo rằng giá trị phân cấp được sử dụng sẽ đủ lớn để đảm bảo rằng tất cả các bit có trọng số liên quan đến ROI sẽ nằm trong mặt phẳng bit cao hơn so với tất cả các bit có trọng số liên quan đến ảnh nền.

F.3.3 Mô tả phương pháp dựa trên Scaling (tham khảo)

Nếu đã để cấp trong phần giới thiệu của F.3, phần mô tả mã hóa ROI chỉ có tính chất tham khảo. Tuy nhiên, khi sử dụng phương pháp ROI dựa trên Scaling, sự thất bại trong việc tạo mặt nạ ROI chính xác ở phía bộ mã hóa sẽ làm giảm đáng kể chất lượng ảnh được mã hóa và sẽ gây tổn thất khi giải mã. Xem F.4.2 về việc tạo mặt nạ ROI bằng phương pháp dựa trên Scaling.

Các hệ số biến đổi được lượng tử từ sẽ được phân cấp theo cách thức sao cho trọng số tương đối của mỗi hệ số biến đổi bằng với giá trị phân cấp của s, của ROI mà chúng được áp dụng. Nếu một hệ số biến đổi lại thuộc một vài ROI thì giá trị s lớn nhất sẽ được lựa chọn. Nếu một hệ số biến đổi thuộc ảnh nền thì giá trị phân cấp s bằng 0. Trước khi phân cấp các hệ số biến đổi được lượng tử từ hóa của một khối mà thì phải tìm giá trị phân cấp lớn nhất s_{Max} và nhỏ nhất s_{Min} đối với khối mà.

Xét hệ số biến đổi được lượng từ, $q_b(u,v,w)$, trong khối mà hiện tại có giá trị phân cấp tương ứng s, (với $s_{\text{Min}} \leq s \leq s_{\text{Max}}$). Sau khi phân cấp, các bit riêng lẻ của $q_b(u,v,w)$ kết thúc $\abs{s_{\text{Max}} - s}$ mặt phẳng bit thấp hơn các bit tương ứng của hệ số có $s = s_{\text{Max}}$. Số lượng bit biến đổi cho khối mà này do đó sẽ tăng thêm $(s_{\text{Max}} - s_{\text{Min}})$.

Do các khối mà được xử lý độc lập nên các hệ số biến đổi được lượng từ thuộc về cùng một ROI có thể kết thúc mà có các mức trọng số khác nhau trong các khối mà khác nhau. Sự chênh lệch này giữa các khối mà phải được cân nhắc bỏ bỏ phần bỏ tổ đọ. Một ví dụ về việc này là nếu toàn bộ một khối...
mã thuộc ảnh nền và một khối mã khác lại có cả hệ số ROI và ảnh nền. Trong trường hợp này, các hệ số ảnh nền trong khối mã thứ hai phải được dịch lại s0 bước, còn trong khối mã thứ nhất không phải dịch. Khi đó, thuật toán phân bổ tốc độ sẽ quyết định việc đảm bảo rằng các mặt phẳng bit từ hai khối mã đều được đưa vào dòng bit theo thứ tự đúng.

Khi bộ mã hóa và giải mã entropy mã hóa các hệ số biến đổi được lượng tử thì các mặt phẳng bit liên quan đến ROI sẽ được mã hóa trước hoặc cùng thời điểm với thông tin liên quan đến ảnh nền. Giá trị phân cấp, si, cho mỗi ROI được quy định bởi người dùng hoặc ứng dụng.

Phương pháp này có thể được mô tả bằng các bước sau cho tập gồm n ROI:

- Với mỗi khối mã trong mỗi thành phần:
 1) Tạo mặt nạ ROI cho toàn bộ ROI i, \{M_i(u,v,w)\}, xem F.4.2.
 2) Tìm s_{\text{Min}} và s_{\text{Max}}, với s_{\text{Min}} và s_{\text{Max}} tương ứng là các giá trị phân cấp nhỏ nhất và lớn nhất trong khối mã hiện tại.
 3) Cộng s_{\text{Block}} = s_{\text{Max}} - s_{\text{Min}} LSB vào mỗi hệ số |q_b(u,v,w)|. Số lượng mặt phẳng bit biên độ \(M'_b \)
 đối với bằng b khi đó sẽ là:
 \[
 M'_b = M_b + s_{\text{Block}}
 \]
 với \(M_b \) được cho bởi Công thức E-2 của ITU-T T.800 | ISO/IEC 15444-1 và giá trị mới của mỗi hệ số sẽ được cho bởi:
 \[
 q_b(u,v,w) = q_b(u,v,w) \cdot 2^{s_{\text{Block}}}
 \]
 4) Đối với mỗi hệ số trong từng khối mã, tìm giá trị phân cấp cao nhất và đặt \(s(u,v,w) \) thành:
 \[
 s(u,v,w) = s_{\text{max}} - \max(s_i - M_i(u,v,w))
 \]
 với \(i = 0 \ldots (\text{số lượng ROI} - 1) \).
 5) Giảm dần tất cả các hệ số sao cho:
 \[
 q_b(u,v,w) = \frac{|q_b(u,v,w)|}{2^{s(u,v,w)}}
 \]
 6) Đối với mỗi ROI, viết giá trị phân cấp s, kiểu, và các điểm tham chiếu vào dòng mã sử dụng đoạn nhãn RGN như được mô tả trong A.2.4.

F.4 Tạo mặt nạ vùng quan tâm

Để có được một ROI có chất lượng tốt hơn so với phần còn lại của ảnh mà vẫn duy trì được độ nén phù hợp thì các bit cần được tiết kiệm bằng cách giữ thông tin về ảnh nền. Để làm việc này thì mặt nạ ROI sẽ được tính toán. Mặt nạ này là một mặt phẳng bit chỉ ra một tập các hệ số biển đổi được lượng từ mà sự mở hội chúng là đủ cho bộ thu phục dựng vùng mong muốn với chất lượng tốt hơn so với ảnh nền (gần như không tồn tại).

Để thể hiện khái niệm về việc tạo mặt nạ ROI, xét một ROI đơn và một thành phần khối đơn, và xác định các mẫu thuộc ROI đó trong miền khối cho bởi mặt nạ nhi phân, M(x, y, z), với:

TCVN xxxx:xxxx
Mặt nạ là bản đồ của ROI trong miền sóng con sao cho chúng có giá trị khác 0 trong ROI và bằng 0 ngoài ROI. Trong mỗi bước, mỗi băng con của mặt nạ khi đó sẽ được cập nhật theo thứ tự quét mành. Mặt nạ khi đó sẽ chỉ ra các hệ số nào được yêu cầu tại bước này sao cho sự biến đổi nghịch sẽ cho lại các hệ số của mặt nạ trước đó.

Ví dụ, bước cuối cùng của biến đổi nghịch là bước hợp nhất hai băng con thành một. Để đến được bước này thì phải tìm được các hệ số của cả hai băng con. Bước trước đó sẽ là bước hợp nhất bốn băng con thành hai băng. Để đến được bước này thì phải tìm được các hệ số trong bốn băng con cần để phục dụng các hệ số có trong mặt nạ của hai băng con đó một cách hoàn hảo. Cũng như vậy, bước trước đó là bước hợp nhất tam băng con thành bốn băng con. Lại một lần nữa, để đến được bước này thì phải tìm được các hệ số trong tam băng con cần cho tất cả bốn băng con này.

Tất cả các bước sau đó đều được thực hiện ngược lại để cho ra mặt nạ. Nếu các hệ số tương ứng với mặt nạ được phát di và thu lại, và sự biến đổi nghịch đã được tính toán trên các hệ số này thì ROI mong muốn sẽ được phục dựng với chất lượng tốt hơn so với phần còn lại của khối (gần như không tổn thất nếu các hệ số ROI đều được mã hóa không tổn thất).

F.4.1 Tạo mặt nạ vùng quan tâm cho phương pháp Maxshift (tham khảo)

Phần dưới đây mô tả cách thức mở rộng mặt nạ bằng các bộ lọc khác nhau. Các phương pháp tương tự có thể được sử dụng đối với các bộ lọc khác.

F.4.1.1 Tạo mặt nạ vùng quan tâm bằng bộ lọc thuận nghịch 5-3 (tham khảo)

Để có được một tập tối ưu các tham số được lượng tử để tiến hành phân cấp thì cần sử dụng các công thức đã được mô tả trong điều này.

Biến đổi sóng con nghịch đã được sử dụng để tìm ra các hệ số cần có trong mặt nạ. Công thức F-5 và F-6 của ITU-T 800 | ISO/IEC 15444-1 cho các hệ số cần để phục dụng X(2n) và X(2n + 1) mà không tổn thất. Có thể thấy ngay rằng đó là L(n), L(n + 1), H(n − 1), H(n), H(n + 1) (xem Hình H.1 của ITU-T T.800 | ISO/IEC 15444-1). Do vậy, nếu X(2n) và X(2n + 1) nằm trong ROI thì các hệ số băng con thấp và cao ở trên đều có trong mặt nạ. Lưu ý rằng X(2n) và X(2n + 1) tương ứng là các điểm có chỉ số chẵn và lẻ, liên quan đến góc lưới toạ độ tham chiếu.

F.4.1.2 Tạo mặt nạ vùng quan tâm bằng bộ lọc không thuận nghịch 9-7 (tham khảo)

Sử giải mã thành công không phụ thuộc vào việc lựa chọn các mẫu để tiến hành phân cấp. Để có được tập tối ưu các hệ số được lượng tử để tiến hành phân cấp thì cần sử dụng các công thức đã được mô tả trong điều này.
Để tìm được các hệ số cần có trong mặt nạ thì biến đổi số con nghịch đã được sử dụng như trong H.3.1.1 của ITU-T T.800 | ISO/IEC 15444-1. Điều này đã được mô tả trong Hình H.2. X(2n) và X(2n + 1) tương ứng là các điểm có chỉ số chẵn và lẻ, liên quan đến gốc lưới tạo độ tham chiếu.

Có thể thấy ngay rằng, các hệ số cần để phục dựng X(2n) và X(2n + 1) mà không tồn tại là L(n – 1) đến L(n + 2) và H(n – 2) đến H(n + 2). Do đó, nếu X(2n) và X(2n + 1) đều nằm trong ROI thì các hệ số bằng con thấp và cao này đều nằm trong mặt nạ.

F.4.2 Tạo mặt nạ vùng quan tâm bằng phương pháp dựa trên Scaling

Dưới đây là những mô tả về cách thức mở rộng mặt nạ cho trường hợp hình khối và hình Elipxoit và cách thức thực hiện với các bộ lọc khác nhau. Các phương pháp tương tự có thể được sử dụng đối với các bộ lọc khác.

F.4.2.1 Tạo mặt nạ hình khối trên lưới tọa độ tham chiếu

Mặt nạ hình khối được mô tả trong điều này được tạo trên lưới tọa độ tham chiếu. Khí được tạo trên lưới tọa độ tham chiếu, phương pháp được mô tả trong F.4.2.3 được sử dụng để tạo mặt nạ trong miền sóng con. Một hình khối được mô tả bởi sáu tham số, xem Hình F.1, tất cả đều được báo hiệu trong nhãn RGN (xem A.2.4). Các tham số gồm (XArgn, YArgn, ZArgn, XBrgn, YBrgn, ZBrgn), với XArgn, YArgn và ZArgn là độ lệch x, y và z của góc trên bên trái mặt trước của hình khối từ gốc lưới tọa độ tham chiếu, trong đó XBrgn, YBrgn và ZBrgn tương ứng là chiều rộng, chiều cao và chiều sâu của hình khối.

Mặt nạ đúng của lưới tọa độ tham chiếu được cho bởi Công thức F.15.

\[
X_{\text{Argn}} \leq x \leq X_{\text{Argn}} + X_{\text{Brgn}} \\
Y_{\text{Argn}} \leq y \leq Y_{\text{Argn}} + Y_{\text{Brgn}} \\
Z_{\text{Argn}} \leq z \leq Z_{\text{Argn}} + Z_{\text{Brgn}}
\]

(F-15)

Hình F.1 – Mặt nạ hình khối trên lưới tọa độ tham chiếu

F.4.2.2 Tạo mặt nạ Elipxoit trên lưới tọa độ tham chiếu

Mặt nạ Elipxoit mô tả trong phần này được tạo trên lưới tọa độ tham chiếu. Khí được tạo trên lưới tọa độ tham chiếu, phương pháp được mô tả trong F.4.2.3 được sử dụng để tạo mặt nạ trong miền sóng con. Hình Elipxoit được mô tả bởi sáu tham số, xem Hình F.2, tất cả đều được báo hiệu trong nhãn RGN (xem A.2.4). Các tham số gồm (XArgn, YArgn, ZArgn, XBrgn, YBrgn, ZBrgn), với
XArgn, YArgn và ZArgn là độ lệch x, y và z của tâm hình Ellipsoid từ gốc lưới tọa độ tham chiếu, trong đó XBrgn, YBrgn và ZBrgn tương ứng là chiều rộng, chiều cao và chiều sâu của hình Ellipsoid.

Mặt nạ đường của lưới tọa độ tham chiếu được cho bởi Công thức F-16.

\[
\frac{(x - XArgn)^2}{XBrgn^2} + \frac{(y - YArgn)^2}{YBrgn^2} + \frac{(z - ZArgn)^2}{ZBrgn^2} \leq 1
\]

(F-16)

Hình F.2 – Mặt nạ Ellipsoid trên lưới tọa độ tham chiếu

F.4.2.3 Tạo nhanh mặt nạ hình khối (tham khảo)

Trong trường hợp ROI hình khối thì mặt nạ có thể được tạo nhanh hơn so với các kiểu nhị phân. Trong trường hợp này, thay vì phải tìm ra cách thức phục dựng từng hệ số và giá trị voxel theo biến đổi nghịch thì chỉ cần xem xét hai vị trí, đó là góc trên bên trái mặt trước và góc dưới bên phải mặt sau của mặt nạ. Góc trước bên trái cao nhất (x_1, y_1, z_1) trên lưới tọa độ tham chiếu sẽ được cho trong đoạn nhãn RGN là (XArgn, YArgn, ZArgn), trong đó góc sau bên phải thấp nhất (x_2, y_2, z_2) trên lưới tọa độ tham chiếu sẽ được cho bởi các tham số trong đoạn nhãn RGN là (XArgn + XBrgn – 1), (YArgn + YBrgn – 1), (ZArgn + ZBrgn – 1).

Việc tạo mặt nạ cũng phải xem xét loại bộ lọc nào đã được sử dụng cho biến đổi.

Trong mỗi mức phân tách, các bước được mô tả ở phần trước được thực hiện để xem mặt nạ mở rộng như thế nào. Xét một mặt nạ 1D cần được phân tách, R_{ext}, và đặt x_1 và x_2 là các chỉ số thấp nhất và cao nhất của các mẫu khác 0 trong R_{ext}.

1) Với mỗi bước nâng s với s trong dải từ 0 đến N_{LS} – 1:
 i) Tìm chỉ số mẫu thấp nhất (2n + m_s \geq x_1) nằm trong mặt nạ
 \[x_1' = 2n + 1 - m_s + 2off_s \]
 (F-17)
 nếu (x_1' > x_1) thì x_1' = x_1 \]
 (F-18)
 ii) Tìm chỉ số mẫu cao nhất (2n + m_s \leq x_2)
 \[x_2' = 2n + 1 - m_s + 2(L_s - 1 + off_s) \]
 (F-19)
 nếu (x_2' > x_2) thì x_2' = x_2 \]
 (F-20)
iii) Đặt \(x_1 = x_1', x_2 = x_2' \) với \(m_s = 1 - m_{s-1} \) cho ra rằng bước nâng thứ \(s \) áp dụng cho các hệ số \(m_s = 0 \) hay cho các hệ số có chỉ số lẻ \(m_s = 1 \), và với \(L_s \) là số lượng hệ số nâng cho bước nâng \(s \).

Đặt tất cả các mẫu giữa \(x_1 \) và \(x_2 \), kể cả tại \(x_1 \) và \(x_2' \), là khác 0 và sau đó sử dụng thủ tục giải chèn được mô tả trong F.4.5 của ITU-T T.800 | ISO/IEC 15444-1 để phân chia các mẫu mặt nạ ROI thành các bảng theo cách các hệ số sóng con được phân chia.

F.5 Các lưu ý về mã hóa vùng quan tâm

F.5.1 Cách sử dụng các phương pháp Scaling và Maxshift

Không được sử dụng phương pháp Maxshift cùng với phương pháp dựa trên Scaling và ngược lại.

F.5.2 Lưu ý về đa thành phần (tham khảo)

Đối với trường hợp các ảnh màu thì áp dụng phương pháp này riêng cho từng thành phần màu. Nếu một vài thành phần màu bị giảm kích thước thì mặt nạ cho các thành phần giảm kích thước sẽ được thiết lập theo như cách với mặt nạ của các thành phần không bị giảm kích thước.

F.5.3 Lưu ý về độ chín xác trong triển khai (tham khảo)

Trong một vài trường hợp, phương pháp mã hóa ROI này có thể làm vượt quá dải động. Tuy nhiên, vấn đề này dễ dàng được giải quyết bằng cách đơn giản là loại bỏ các mặt không=các mặt phải hoạt động với quá giới hạn do quá trình giảm kích thước. Tác động của việc này sẽ làm ROI có chất lượng tốt hơn so với ảnh nền, cho dù là toàn bộ động bit đã được giải mã. Tuy nhiên, điều này có thể lại gây nên các vấn đề nếu ảnh được mã hóa với ROI theo kiểu không tổn thất. Việc loại bỏ các mặt không=các mặt phải hoạt động với quá giới hạn đối với ảnh nền có thể lại làm cho ảnh nền không được mã hóa không tổn thất, và trường hợp tồi nhất là ảnh nền có thể không hề được phục dựng. Điều này sẽ tùy thuộc vào đối tượng.
Phụ lục G
(Tham khảo)
Các ví dụ và hướng dẫn, phần mở rộng

G.1 Mô hình hóa tốc độ méo

Thư mục tài liệu tham khảo

